Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058113

RESUMO

The goals of the "dual carbon" program in China are to implement a series of air pollution policies to reduce the emission of carbon-bearing particulate matter (PM). Following improvements in the reduction in carbon emissions in Handan City, China, fine particulate matter (PM2.5) was collected in the winters from 2016 to 2020 to characterize the concentrations and sources of carbonaceous components in PM2.5. Trend analysis revealed that both organic carbon (OC) and elemental carbon (EC) concentrations significantly decreased. The proportion of total carbon aerosol (TCA) in PM2.5 decreased by 47.0%, highlighting the effective reduction in carbon emissions. Secondary organic carbon (SOC) concentrations increased from 2016 (12.86 ± 14.10 µg·m-3) to 2018 (36.76 ± 21.59 µg·m-3) and then declined gradually. SOC/OC was larger than 67.0% from 2018 to 2020, implying that more effective synergistic emission reduction measures for carbonaceous aerosol and volatile organic compounds (VOCs) were needed. In the winters from 2016 to 2020, primary organic carbon (POC) concentrations reduced by 76.1% and 87.6% under a light/moderate pollution period (LP) and heavy/severe pollution periods (HPs), respectively. The TCA/PM2.5 showed a decreasing trend under LP and HP conditions, decreasing by 42.1% and 54.7%, respectively. Source analysis revealed that carbonaceous components were mainly from biomass burning, coal combustion and automotive exhaust emissions in the winters of 2016 and 2020. OC/EC and K+/EC analysis pointed out that air pollutant reduction measurements should focus on rectification biomass fuels in the next stage. Compared with 2016, the contributions of automotive exhaust emissions decreased in 2020. OC and EC concentrations decreased due to control measures on automotive exhaust emissions.

2.
Huan Jing Ke Xue ; 44(12): 6463-6473, 2023 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-38098375

RESUMO

To explore the characteristics and sources of PM2.5 pollution in winter of Handan City in the past five years, PM2.5 samples were collected in winter of 2016 to 2020, and eight types of water-soluble inorganic ions were analyzed. The principal component analysis(PCA) model was used to analyze the types of pollution sources, and the backward trajectory and potential source contribution factor(PSCF) were used to simulate the transport trajectory and pollution sources. The results showed that the PM2.5 concentration in winter of 2018 was the highest, increasing by 60.44%, 25.46%, 91.43%, and 21.53% compared with that in 2016, 2017, 2019, and 2020, respectively. In the winter of 2020, the concentration of water-soluble inorganic ions(WSIIs) decreased by 18.86% compared with that in 2016, and WSIIs/PM2.5 decreased to 26.69%. The PM2.5 concentration(110.20-209.65 µg·m-3) at night was higher than that in the daytime(95.21-193.00 µg·m-3). The concentration of NO3- and NH4+ increased more at night. On the contrary, the concentration and proportion of Cl-decreased annually. In the winter of 2020, the daytime concentrations of K+, Ca2+, Na+, and Mg2+ decreased by 69.72%, 97.10%, 90.91%, and 74.51% compared with that of 2018, and the night concentrations decreased by 66.67%, 95.38%, 91.67%, and 77.78%, respectively. In 2020, the concentrations of NO3-, SO42-, and NH4+ on polluted days were 4.90, 5.80, and 5.20 times those on non-polluted days, with the largest increase in five years. PCA results showed that the main sources of pollution were secondary sources, coal sources, biomass combustion sources, and road and building dust. The backward trajectory and PSCF analysis results showed that pollution transport continued to exist between south-central Mongolia and central Inner Mongolia in winter and was influenced by the transport between northern Henan and Handan and central Hebei and Handan in winter of 2016 and 2017, whereas the latter had a greater impact in winter of 2018-2020.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...