Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
J Org Chem ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935873

RESUMO

A nickel-catalyzed direct sulfonylation of alkenes with sulfonyl chlorides has been developed using 1,10-phenanthroline-5,6-dione as the ligand. Unactivated alkenes and styrenes including 1,1-, 1,2-disubstituted alkenes can be subjected to the protocol, and a wide range of vinyl sulfones was obtained in high to excellent yields with good functional group compatibility. Notably, the process did not allow the desulfonylation of sulfonyl chloride or chlorosulfonylation of alkenes. Radical-trapping experiment supported that a sulfonyl free-radical was likely produced and triggered subsequent transformation in the process.

2.
Exp Hematol Oncol ; 13(1): 58, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822440

RESUMO

BACKGROUND: Gallbladder cancer (GBC) is the most common and lethal malignancy of the biliary tract that lacks effective therapy. In many GBC cases, infiltration into adjacent organs or distant metastasis happened long before the diagnosis, especially the direct liver invasion, which is the most common and unfavorable way of spreading. METHODS: Single-cell RNA sequencing (scRNA-seq), spatial transcriptomics (ST), proteomics, and multiplexed immunohistochemistry (mIHC) were performed on GBC across multiple tumor stages to characterize the tumor microenvironment (TME), focusing specifically on the preferential enrichment of neutrophils in GBC liver invasion (GBC-LI). RESULTS: Multi-model Analysis reveals the immunosuppressive TME of GBC-LI that was characterized by the enrichment of neutrophils at the invasive front. We identified the context-dependent transcriptional states of neutrophils, with the Tumor-Modifying state being associated with oxidized low-density lipoprotein (oxLDL) metabolism. In vitro assays showed that the direct cell-cell contact between GBC cells and neutrophils led to the drastic increase in oxLDL uptake of neutrophils, which was primarily mediated by the elevated OLR1 on neutrophils. The oxLDL-absorbing neutrophils displayed a higher potential to promote tumor invasion while demonstrating lower cancer cytotoxicity. Finally, we identified a neutrophil-promoting niche at the invasive front of GBC-LI that constituted of KRT17+ GBC cells, neutrophils, and surrounding fibroblasts, which may help cultivate the oxLDL-absorbing neutrophils. CONCLUSIONS: Our study reveals the existence of a subset of pro-tumoral neutrophils with a unique ability to absorb oxLDL via OLR1, a phenomenon induced through cell-cell contact with KRT17+ GBC cells in GBC-LI.

3.
BMC Oral Health ; 24(1): 718, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909208

RESUMO

BACKGROUND: Parotid gland carcinoma (PGC) is a rare malignant tumor. The purpose of this study was to investigate the role of immune-inflammatory-nutrition indicators and age-adjusted Charlson comorbidity index score (ACCI) of PGC and develop the nomogram model for predicting prognosis. METHOD: All patients diagnosed with PGC in two tertiary hospitals, treated with surgical resection, from March 2012 to June 2018 were obtained. Potential prognostic factors were identified by univariate and multivariate Cox regression analyses. The nomogram models were established based on these identified independent prognostic factors. The performance of the developed prognostic model was estimated by related indexes and plots. RESULT: The study population consisted of 344 patients with PGC who underwent surgical resection, 285 patients without smoking (82.8%), and 225 patients (65.4%) with mucoepidermoid carcinoma, with a median age of 50.0 years. American Joint Committee on Cancer (AJCC) stage (p < 0.001), pathology (p = 0.019), tumor location (p < 0.001), extranodal extension (ENE) (p < 0.001), systemic immune-inflammation index (SII) (p = 0.004), prognostic nutrition index (PNI) (p = 0.003), ACCI (p < 0.001), and Glasgow prognostic Score (GPS) (p = 0.001) were independent indicators for disease free survival (DFS). Additionally, the independent prognostic factors for overall survival (OS) including AJCC stage (p = 0.015), pathology (p = 0.004), tumor location (p < 0.001), perineural invasion (p = 0.009), ENE (p < 0.001), systemic immune-inflammation index (SII) (p = 0.001), PNI (p = 0.001), ACCI (p = 0.003), and GPS (p = 0.033). The nomogram models for predicting DFS and OS in PGC patients were generated based on these independent risk factors. All nomogram models show good discriminative capability with area under curves (AUCs) over 0.8 (DFS 0.802, and OS 0.825, respectively). Decision curve analysis (DCA), integrated discrimination improvement (IDI), and net reclassification index (NRI) show good clinical net benefit of the two nomograms in both training and validation cohorts. Kaplan-Meier survival analyses showed superior discrimination of DFS and OS in the new risk stratification system compared with the AJCC stage system. Finally, postoperative patients with PGC who underwent adjuvant radiotherapy had a better prognosis in the high-, and medium-risk subgroups (p < 0.05), but not for the low-risk subgroup. CONCLUSION: The immune-inflammatory-nutrition indicators and ACCI played an important role in both DFS and OS of PGC patients. Adjuvant radiotherapy had no benefit in the low-risk subgroup for PGC patients who underwent surgical resection. The newly established nomogram models perform well and can provide an individualized prognostic reference, which may be helpful for patients and surgeons in proper follow-up strategies.


Assuntos
Nomogramas , Neoplasias Parotídeas , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Neoplasias Parotídeas/cirurgia , Neoplasias Parotídeas/patologia , Prognóstico , Idoso , Adulto , Comorbidade , Estudos Retrospectivos , Inflamação , Fatores Etários
4.
Obstet Gynecol Surv ; 79(6): 343-347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38896430

RESUMO

Importance: Polycystic ovary syndrome (PCOS) is a common endocrine syndrome with multiple causes and polymorphic clinical manifestations, which is one of the important causes of menstrual disorders in women of childbearing age. It has been found that branched-chain amino acids (BCAAs), a class of essential amino acids that cannot be synthesized by the human body, play a significant role in the metabolic changes of PCOS, which may be involved in the pathogenesis of PCOS. Objective: The purpose of this review is to summarize the relevance between BCAAs and metabolic abnormalities in PCOS and to explore their possible mechanisms. Evidence Acquisition: The evidence is mainly obtained by reviewing the literature on PubMed related to PCOS, BCAAs, and related metabolic abnormalities and conducting summary analysis. Results: The metabolism of BCAAs can affect the homeostasis of glucose metabolism, possibly by disrupting the balance of gut microbiota, activating mTORC1 targets, producing mitochondrial toxic metabolites, and increasing the expression of proinflammatory genes. The correlation between obesity and BCAAs in PCOS patients may be related to the gene expression of BCAA metabolism-related enzymes in adipose tissue. The association between BCAA metabolic changes and nonalcoholic fatty liver disease in PCOS patients has not been fully clarified, which may be related to the lipid accumulation caused by BCAAs. At present, it is believed that hyperandrogenism in patients with PCOS is not related to BCAAs. However, through the study of changes in BCAA metabolism in prostate cancer caused by hyperandrogenism, we speculate that the relationship between BCAAs and hyperandrogenism may be mediated by mTORC1 and amino acid transporters. Conclusions and Relevance: Review of prior articles reveals that BCAAs may be related to insulin resistance, obesity, nonalcoholic fatty liver, and hyperandrogenism in PCOS patients, and its mechanisms are complex, diverse, and interrelated. This review also discussed the mechanism of BCAAs and these metabolic disorders in non-PCOS patients, which may provide some help for future research.


Assuntos
Aminoácidos de Cadeia Ramificada , Síndrome do Ovário Policístico , Humanos , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/complicações , Aminoácidos de Cadeia Ramificada/metabolismo , Feminino , Hiperandrogenismo/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Obesidade/complicações , Resistência à Insulina
5.
Biotechnol Biofuels Bioprod ; 17(1): 80, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877488

RESUMO

To increase the production of biomass and astaxanthin from Haematococcus pluvialis to meet the high market demand for astaxanthin, this study recruited two typical and negligible phytohormones (namely resveratrol and catechol) for the stepwise treatments of H. pluvialis. It was found that the hybrid and sequential treatments of resveratrol (200 µmol) and catechol (100 µmol) had achieved the maximum astaxanthin content at 33.96 mg/L and 42.99 mg/L, respectively. Compared with the hybrid treatment, the physiological data of H. pluvialis using the sequential strategy revealed that the enhanced photosynthetic performance via the Calvin cycle by RuBisCO improved the biomass accumulation during the macrozooid stage; meanwhile, the excessive ROS production had occurred to enhance astaxanthin production with the help of NADPH overproduction during the hematocyst stage. Overall, this study provides improved knowledge of the impacts of phytohormones in improving biomass and astaxanthin of H. pluvialis, which shed valuable insights for advancing microalgae-based biorefinery.

6.
J Clin Microbiol ; 62(6): e0014924, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38690881

RESUMO

We identified 23 cases of Mycobacterium immunogenum respiratory acquisition linked to a colonized plumbing system at a new hospital addition. We conducted a genomic and epidemiologic investigation to assess for clonal acquisition of M. immunogenum from hospital water sources and improve understanding of genetic distances between M. immunogenum isolates. We performed whole-genome sequencing on 28 M. immunogenum isolates obtained from August 2013 to July 2021 from patients and water sources on four intensive care and intermediate units at an academic hospital. Study hospital isolates were recovered from 23 patients who experienced de novo respiratory isolation of M. immunogenum and from biofilms obtained from five tap water outlets. We also analyzed 10 M. immunogenum genomes from previously sequenced clinical (n = 7) and environmental (n = 3) external control isolates. The 38-isolate cohort clustered into three clades with pairwise single-nucleotide polymorphism (SNP) distances ranging from 0 to 106,697 SNPs. We identified two clusters of study hospital isolates in Clade 1 and one cluster in Clade 2 for which clinical and environmental isolates differed by fewer than 10 SNPs and had less than 0.5% accessory genome variation. A less restrictive combined threshold of 40 SNPs and 5% accessory genes reliably captured additional isolates that met clinical criteria for hospital acquisition, but 12 (4%) of 310 epidemiologically unrelated isolate pairs also met this threshold. Core and accessory genome analyses confirmed respiratory acquisition of multiple clones of M. immunogenum from hospital water sources to patients. When combined with epidemiologic investigation, genomic thresholds accurately distinguished hospital acquisition.


Assuntos
Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Humanos , Genoma Bacteriano , Hospitais , Água Potável/microbiologia , Mycobacterium/genética , Mycobacterium/classificação , Mycobacterium/isolamento & purificação , Masculino , Microbiologia da Água , Genômica , Feminino , Pessoa de Meia-Idade , Idoso , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Adulto
7.
Mater Today Bio ; 26: 101089, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38779557

RESUMO

Catheter-associated urinary tract infection (CAUTI) is a common clinical problem, especially during long-term catheterization, causing additional pain to patients. The development of novel antimicrobial coatings is needed to prolong the service life of catheters and reduce the incidence of CAUTIs. Herein, we designed an antimicrobial catheter coated with a piezoelectric zinc oxide nanoparticles (ZnO NPs)-incorporated polyvinylidene difluoride-hexafluoropropylene (ZnO-PVDF-HFP) membrane. ZnO-PVDF-HFP could be stably coated onto silicone catheters simply by a one-step solution film-forming method, very convenient for industrial production. In vitro, it was demonstrated that ZnO-PVDF-HFP coating could significantly inhibit bacterial growth and the formation of bacterial biofilm under ultrasound-mediated mechanical stimulation even after 4 weeks. Importantly, the on and off of antimicrobial activity as well as the strenth of antibacterial property could be controlled in an adaptive manner via ultrasound. In a rabbit model, the ZnO-PVDF-HFP-coated catheter significantly reduced the incidence CAUTIs compared with clinically-commonly used catheters under assistance of ultrasonication, and no side effect was detected. Collectively, the study provided a novel antibacterial catheter to prevent the occurrence of CAUTIs, whose antibacterial activity could be controlled in on-demand manner, adaptive to infection situation and promising in clinical application.

8.
J Appl Biomater Funct Mater ; 22: 22808000241245298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38733215

RESUMO

In the current study, Cnicus benedictus extract was loaded into electrospun gelatin scaffolds for diabetic wound healing applications. Scaffolds were characterized in vitro by mechanical testing, cell culture assays, electron microscopy, cell migration assay, and antibacterial assay. In vivo wound healing study was performed in a rat model of diabetic wound. In vitro studies revealed fibrous architecture of our developed dressings and their anti-inflammatory properties. In addition, Cnicus benedictus extract-loaded wound dressings prevented bacterial penetration. In vivo study showed that wound size reduction, collagen deposition, and epithelial thickness were significantly greater in Cnicus benedictus extract-loaded scaffolds than other groups. Gene expression studies showed that the produced wound dressings significantly upregulated VEGF and IGF genes expression in diabetic wounds.


Assuntos
Bandagens , Diabetes Mellitus Experimental , Gelatina , Cicatrização , Animais , Gelatina/química , Cicatrização/efeitos dos fármacos , Ratos , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/patologia , Masculino , Humanos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Alicerces Teciduais/química
9.
Chem Commun (Camb) ; 60(44): 5723-5726, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38742267

RESUMO

Over the past decade, significant progress has been made in the direct C-H acylation of naphthalenes, occurring at the α or ß-positions to yield valuable ketones through Friedel-Crafts acylation or transition-metal-catalysed carbonylative coupling reactions. Nevertheless, highly regioselective acylation of naphthalenes remains a formidable challenge. Herein, we developed a nickel-catalysed reductive ring-opening reaction of 7-oxabenzonorbornadienes with acyl chlorides as the electrophilic coupling partner, providing a new method for the exclusive preparation of ß-acyl naphthalenes.

10.
J Sci Food Agric ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38785324

RESUMO

BACKGROUND: Peach brown rot, caused by the pathogen Monilinia fructicola, represents a significant postharvest infectious disease affecting peach fruit. This disease is responsible for a substantial increase in fruit decay rates, leading to significant economic losses, often exceeding 50%. Currently, there is a growing interest in identifying biocontrol agents to mitigate peach brown rot, with a predominant interest in Bacillus species. RESULTS: In this investigation, we isolated 410 isolates of actinomycetes from non-farmland ecosystem soil samples. Subsequently, 27 isolates exhibiting superior inhibitory capabilities were selected. Among these, strain XDS1-5 demonstrated the most robust fungistatic effect against brown rot disease, achieving an 80% inhibition rate in vitro and a 66% inhibition rate in vivo. XDS1-5 was identified as belonging to the Streptomyces virginiae species. Furthermore, a fermentation filtrate of XDS1-5 exhibited the ability to metabolize 34.21% of the tested carbon sources and 7.37% of the tested nitrogen sources. Particularly noteworthy was its capacity to disrupt the cell membrane structure directly, leading to increased cell membrane permeability and cytoplasmic leakage. Additionally, our investigation indicated that indoline, a metabolite produced by XDS1-5, played a pivotal role in inhibiting the growth of M. fructicola. CONCLUSION: In summary, our study has identified a biocontrol actinomycete, XDS1-5, with the potential to effectively inhibit postharvest brown rot disease in peaches. This finding holds great significance for the biological control of peach brown rot, offering promising prospects for mitigating the economic losses associated with this devastating disease. © 2024 Society of Chemical Industry.

11.
J Virol ; 98(5): e0011624, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591880

RESUMO

Flaviviruses in the Japanese encephalitis virus (JEV) serogroup, such as JEV, West Nile virus, and St. Louis encephalitis virus, can cause severe neurological diseases. The nonstructural protein 1 (NS1) is a multifunctional protein of flavivirus that can be secreted by infected cells and circulate in the host bloodstream. NS1' is an additional form of NS1 protein with 52 amino acids extension at its carboxy-terminal and is produced exclusively by flaviviruses in the JEV serogroup. In this study, we demonstrated that the secreted form of both NS1 and NS1' can disrupt the blood-brain barrier (BBB) of mice, with NS1' exhibiting a stronger effect. Using the in vitro BBB model, we found that treatment of soluble recombinant JEV NS1 or NS1' protein increases the permeability of human brain microvascular endothelial cells (hBMECs) and leads to the degradation of tight junction proteins through the autophagy-lysosomal pathway. Consistently, NS1' protein exhibited a more pronounced effect compared to NS1 in these cellular processes. Further research revealed that the increased expression of macrophage migration inhibitory factor (MIF) is responsible for triggering autophagy after NS1 or NS1' treatment in hBMECs. In addition, TLR4 and NF-κB signaling was found to be involved in the activation of MIF transcription. Moreover, administering the MIF inhibitor has been shown to decrease viral loads and mitigate inflammation in the brains of mice infected with JEV. This research offers a novel perspective on the pathogenesis of JEV. In addition, the stronger effect of NS1' on disrupting the BBB compared to NS1 enhances our understanding of the mechanism by which flaviviruses in the JEV serogroup exhibit neurotropism.IMPORTANCEJapanese encephalitis (JE) is a significant viral encephalitis worldwide, caused by the JE virus (JEV). In some patients, the virus cannot be cleared in time, leading to the breach of the blood-brain barrier (BBB) and invasion of the central nervous system. This invasion may result in cognitive impairment, behavioral disturbances, and even death in both humans and animals. However, the mechanism by which JEV crosses the BBB remains unclear. Previous studies have shown that the flavivirus NS1 protein plays an important role in causing endothelial dysfunction. The NS1' protein is an elongated form of NS1 protein that is particularly produced by flaviviruses in the JEV serogroup. This study revealed that both the secreted NS1 and NS1' of JEV can disrupt the BBB by breaking down tight junction proteins through the autophagy-lysosomal pathway, and NS1' is found to have a stronger effect compared to NS1 in this process. In addition, JEV NS1 and NS1' can stimulate the expression of MIF, which triggers autophagy via the ERK signaling pathway, leading to damage to BBB. Our findings reveal a new function of JEV NS1 and NS1' in the disruption of BBB, thereby providing the potential therapeutic target for JE.


Assuntos
Autofagia , Barreira Hematoencefálica , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Proteínas não Estruturais Virais , Animais , Humanos , Camundongos , Barreira Hematoencefálica/virologia , Barreira Hematoencefálica/metabolismo , Encéfalo/virologia , Encéfalo/metabolismo , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/virologia , Encefalite Japonesa/metabolismo , Células Endoteliais/virologia , Células Endoteliais/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , NF-kappa B/metabolismo , Proteínas não Estruturais Virais/metabolismo
12.
Bioresour Technol ; 401: 130708, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636878

RESUMO

In this study, the biochemical response of Phaeodactylum tricornutum to varying concentrations of inorganic selenium (Se) was investigated. It was observed that, when combined with fulvic acid, P. tricornutum exhibited enhanced uptake and biotransformation of inorganic Se, as well as increased microalgal lipid biosynthesis. Notably, when subjected to moderate (5 and 10 mg/L) and high (20 and 40 mg/L) concentrations of selenite under fulvic acid treatment, there was a discernible redirection of carbon flux towards lipogenesis and protein biosynthesis from carbohydrates. In addition, the key parameters of microalgae-based biofuels aligned with the necessary criteria outlined in biofuel regulations. Furthermore, the Se removal capabilities of P. tricornutum, assisted by fulvic acid, were coupled with the accumulation of substantial amounts of organic Se, specifically SeCys. These findings present a viable and successful approach to establish a microalgae-based system for Se uptake and biotransformation.


Assuntos
Benzopiranos , Biocombustíveis , Biotransformação , Diatomáceas , Diatomáceas/metabolismo , Benzopiranos/metabolismo , Ácido Selenioso/metabolismo , Microalgas/metabolismo
13.
Int J Pharm ; 654: 123943, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38432451

RESUMO

Hypoxia as an inherent feature in tumors is firmly associated with unsatisfactory clinical outcomes of photodynamic therapy (PDT) since the lack of oxygen leads to ineffective reactive oxygen species (ROS) productivity for tumor eradication. In this study, an oxidative phosphorylation (OXPHOS) targeting nanoplatform was fabricated to alleviate hypoxia and enhance the performance of PDT by encapsulating IR780 and OXPHOS inhibitor atovaquone (ATO) in triphenylphosphine (TPP) modified poly(ethylene glycol) methyl ether-block-poly(L-lactide-co-glycolide) (mPEG-PLGA) nanocarriers (TNPs/IA). ATO by interrupting the electron transfer in OXPHOS could suppress mitochondrial respiration of tumor cells, economising on oxygen for the generation of ROS. Benefiting from the mitochondrial targeting function of TPP, ATO was directly delivered to its site of action to obtain highlighted effect at a lower dosage. Furthermore, positioning the photosensitizer IR780 to mitochondria, a more vulnerable organelle to ROS, was a promising method to attenuate the spatiotemporal limitation of ROS caused by its short half-life and narrow diffusion radius. As a result, TNPs/IA exhibited accurate subcellular localization, lead to the collapse of ATP production by damaging mitochondrion and elicited significant antitumor efficacy via oxygen-augmented PDT in the HeLa subcutaneous xenograft model. Overall, TNPs/IA was a potential strategy in photodynamic eradication of tumors.


Assuntos
Nanopartículas , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio , Fosforilação Oxidativa , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Nanopartículas/ultraestrutura , Oxigênio , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral
14.
Head Neck ; 46(5): 1009-1019, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38441255

RESUMO

OBJECTIVE: To enhance the accuracy in predicting lymph node metastasis (LNM) preoperatively in patients with papillary thyroid microcarcinoma (PTMC), refining the "low-risk" classification for tailored treatment strategies. METHODS: This study involves the development and validation of a predictive model using a cohort of 1004 patients with PTMC undergoing thyroidectomy along with central neck dissection. The data was divided into a training cohort (n = 702) and a validation cohort (n = 302). Multivariate logistic regression identified independent LNM predictors in PTMC, leading to the construction of a predictive nomogram model. The model's performance was assessed through ROC analysis, calibration curve analysis, and decision curve analysis. RESULTS: Identified LNM predictors in PTMC included age, tumor maximum diameter, nodule-capsule distance, capsular contact length, bilateral suspicious lesions, absence of the lymphatic hilum, microcalcification, and sex. Especially, tumors larger than 7 mm, nodules closer to the capsule (less than 3 mm), and longer capsular contact lengths (more than 1 mm) showed higher LNM rates. The model exhibited AUCs of 0.733 and 0.771 in the training and validation cohorts respectively, alongside superior calibration and clinical utility. CONCLUSION: This study proposes and substantiates a preoperative predictive model for LNM in patients with PTMC, honing the precision of "low-risk" categorization. This model furnishes clinicians with an invaluable tool for individualized treatment approach, ensuring better management of patients who might be proposed observation or ablative options in the absence of such predictive information.


Assuntos
Carcinoma Papilar , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/cirurgia , Neoplasias da Glândula Tireoide/patologia , Carcinoma Papilar/cirurgia , Carcinoma Papilar/patologia , Esvaziamento Cervical , Tireoidectomia , Metástase Linfática/patologia , Estudos Retrospectivos , Linfonodos/patologia , Fatores de Risco
15.
J Agric Food Chem ; 72(12): 6402-6413, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38491989

RESUMO

Bacterial diseases could severely harm agricultural production. To develop new antibacterial agents, the secondary metabolites of a deep-sea-derived fungus Simplicillium obclavatum EIODSF 020 with antibacterial activities against plant and fish pathogens were investigated by a bioassay-guided approach, which led to the isolation of 11 new peptaibiotics, simplicpeptaibs A-K (1-11). They contain 16-19 residues, including ß-alanine, tyrosine, or tyrosine O-sulfate, that were rarely present in peptaibiotics. Their structures were elucidated by spectroscopic analyses (NMR, HRMS, HRMS2, and ECD) and Marfey's method. The primary and secondary structures of novel sulfated peptaibiotic 9 were reconfirmed by single-crystal X-ray diffraction analysis. Genome sequencing of S. obclavatum EIODSF 020 allowed the detection of a gene cluster encoding two individual NRPSs (totally containing 19 modules) that was closely related to simplicpeptaib biosynthesis. Antibacterial investigations of 1-11 together with the previously isolated linear and cyclic peptides from this strain suggested the antibacterial property of this fungus was attributed to the peptaibiotics and cyclic lipopeptides. Among them, compounds 4, 6, 7, and 9 showed significant activity against the tobacco pathogen Ralstonia solanacearum or tilapia pathogens Streptococcus iniae and Streptococcus agalactiae. The antibacterial activity of 6 against R. solanacearum could be enhanced by the addition of 1% NaCl. The structure-bioactivity relationship of simplicpeptaibs was discussed.


Assuntos
Antibacterianos , Hypocreales , Animais , Antibacterianos/química , Hypocreales/metabolismo , Peptídeos Cíclicos/metabolismo , Peixes/metabolismo
16.
Bioact Mater ; 37: 239-252, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38549770

RESUMO

Vascular diseases seriously threaten human life and health. Exogenous delivery of nitric oxide (NO) represents an effective approach for maintaining vascular homeostasis during pathological events. However, the overproduction of reactive oxygen species (ROS) at vascular injury sites would react with NO to produce damaging peroxynitrite (ONOO-) species and limit the therapeutic effect of NO. Hence, we design a ROS-responsive NO nanomedicine (t-PBA&NO NP) with ROS scavenging ability to solve the dilemma of NO-based therapy. t-PBA&NO NP targets NO and anti-oxidant ethyl caffeate (ECA) to the injury sites via collagen IV homing peptide. The ROS-triggered ROS depletion and ECA release potently alleviate local oxidative stress via ROS scavenging, endoplasmic reticulum and mitochondrial regulation. It subsequently maximizes vascular modulation effects of NO, without production of harmful compounds, reactive nitrogen species (RNS). Therefore, it significantly increases competitiveness of human umbilical vein endothelial cells (HUVECs) over human aortic smooth muscle cells (HASMCs) both in vitro and in vivo. The strategy proved effective in inducing faster re-endothelialization, inhibiting neointimal formation and restoring vascular homeostasis. The synergy between ROS depletion and NO therapy served as a new inspiration for the treatment of cardiovascular diseases and other ROS-associated illnesses.

17.
Head Neck ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38348564

RESUMO

BACKGROUND: The preservation of parathyroid glands is crucial in endoscopic thyroid surgery to prevent hypocalcemia and related complications. However, current methods for identifying and protecting these glands have limitations. We propose a novel technique that has the potential to improve the safety and efficacy of endoscopic thyroid surgery. PURPOSE: Our study aims to develop a deep learning model called PTAIR 2.0 (Parathyroid gland Artificial Intelligence Recognition) to enhance parathyroid gland recognition during endoscopic thyroidectomy. We compare its performance against traditional surgeon-based identification methods. MATERIALS AND METHODS: Parathyroid tissues were annotated in 32 428 images extracted from 838 endoscopic thyroidectomy videos, forming the internal training cohort. An external validation cohort comprised 54 full-length videos. Six candidate algorithms were evaluated to select the optimal one. We assessed the model's performance in terms of initial recognition time, identification duration, and recognition rate and compared it with the performance of surgeons. RESULTS: Utilizing the YOLOX algorithm, we developed PTAIR 2.0, which demonstrated superior performance with an AP50 score of 92.1%. The YOLOX algorithm achieved a frame rate of 25.14 Hz, meeting real-time requirements. In the internal training cohort, PTAIR 2.0 achieved AP50 values of 94.1%, 98.9%, and 92.1% for parathyroid gland early prediction, identification, and ischemia alert, respectively. Additionally, in the external validation cohort, PTAIR outperformed both junior and senior surgeons in identifying and tracking parathyroid glands (p < 0.001). CONCLUSION: The AI-driven PTAIR 2.0 model significantly outperforms both senior and junior surgeons in parathyroid gland identification and ischemia alert during endoscopic thyroid surgery, offering potential for enhanced surgical precision and patient outcomes.

18.
Adv Sci (Weinh) ; 11(16): e2308077, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403462

RESUMO

The foreign body response (FBR) to implanted biomaterials and biomedical devices can severely impede their functionality and even lead to failure. The discovery of effective anti-FBR materials remains a formidable challenge. Inspire by the enrichment of glutamic acid (E) and lysine (K) residues on human protein surfaces, a class of zwitterionic polypeptide (ZIP) hydrogels with alternating E and K sequences to mitigate the FBR is prepared. When subcutaneously implanted, the ZIP hydrogels caused minimal inflammation after 2 weeks and no obvious collagen capsulation after 6 months in mice. Importantly, these hydrogels effectively resisted the FBR in non-human primate models for at least 2 months. In addition, the enzymatic degradability of the gel can be controlled by adjusting the crosslinking degree or the optical isomerism of amino acid monomers. The long-term FBR resistance and controlled degradability of ZIP hydrogels open up new possibilities for a broad range of biomedical applications.


Assuntos
Reação a Corpo Estranho , Hidrogéis , Animais , Hidrogéis/química , Camundongos , Materiais Biocompatíveis/química , Lisina/química , Primatas , Roedores , Ácido Poliglutâmico/química
19.
Front Endocrinol (Lausanne) ; 15: 1337322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362277

RESUMO

Background: Robotic assistance in thyroidectomy is a developing field that promises enhanced surgical precision and improved patient outcomes. This study investigates the impact of the da Vinci Surgical System on operative efficiency, learning curve, and postoperative outcomes in thyroid surgery. Methods: We conducted a retrospective cohort study of 104 patients who underwent robotic thyroidectomy between March 2018 and January 2022. We evaluated the learning curve using the Cumulative Sum (CUSUM) analysis and analyzed operative times, complication rates, and postoperative recovery metrics. Results: The cohort had a mean age of 36 years, predominantly female (68.3%). The average body mass index (BMI) was within the normal range. A significant reduction in operative times was observed as the series progressed, with no permanent hypoparathyroidism or recurrent laryngeal nerve injuries reported. The learning curve plateaued after the 37th case. Postoperative recovery was consistent, with no significant difference in hospital stay duration. Complications were minimal, with a noted decrease in transient vocal cord palsy as experience with the robotic system increased. Conclusion: Robotic thyroidectomy using the da Vinci system has demonstrated a significant improvement in operative efficiency without compromising safety. The learning curve is steep but manageable, and once overcome, it leads to improved surgical outcomes and high patient satisfaction. Further research with larger datasets and longer follow-up is necessary to establish the long-term benefits of robotic thyroidectomy.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Neoplasias da Glândula Tireoide , Humanos , Feminino , Adulto , Masculino , Estudos Retrospectivos , Neoplasias da Glândula Tireoide/cirurgia
20.
Behav Res Methods ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418689

RESUMO

Multi-informant studies are popular in social and behavioral science. However, their data analyses are challenging because data from different informants carry both shared and unique information and are often incomplete. Using Monte Carlo Simulation, the current study compares three approaches that can be used to analyze incomplete multi-informant data when there is a distinction between reference and nonreference informants. These approaches include a two-method measurement model for planned missing data (2MM-PMD), treating nonreference informants' reports as auxiliary variables with the full-information maximum likelihood method or multiple imputation, and listwise deletion. The result suggests that 2MM-PMD, when correctly specified and data are missing at random, has the best overall performance among the examined approaches regarding point estimates, type I error rates, and statistical power. In addition, it is also more robust to data that are not missing at random.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA