Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Med Syst ; 47(1): 86, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37581690

RESUMO

ChatGPT, a language model developed by OpenAI, uses a 175 billion parameter Transformer architecture for natural language processing tasks. This study aimed to compare the knowledge and interpretation ability of ChatGPT with those of medical students in China by administering the Chinese National Medical Licensing Examination (NMLE) to both ChatGPT and medical students. We evaluated the performance of ChatGPT in three years' worth of the NMLE, which consists of four units. At the same time, the exam results were compared to those of medical students who had studied for five years at medical colleges. ChatGPT's performance was lower than that of the medical students, and ChatGPT's correct answer rate was related to the year in which the exam questions were released. ChatGPT's knowledge and interpretation ability for the NMLE were not yet comparable to those of medical students in China. It is probable that these abilities will improve through deep learning.


Assuntos
Inteligência Artificial , Avaliação Educacional , Licenciamento , Medicina , Estudantes de Medicina , Humanos , Povo Asiático , China , Conhecimento , Idioma , Medicina/normas , Licenciamento/normas , Estudantes de Medicina/estatística & dados numéricos , Avaliação Educacional/normas
2.
Exp Eye Res ; 223: 109201, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35940240

RESUMO

The degeneration of the optic nerve narrows the visual field, eventually causing overall vision loss. This study aimed to identify global protein changes in the retina of optic nerve crushing (ONC) mice and to identify key regulators and pathways involved in injury-induced cell death during the progression of optic neurodegeneration. Label-free quantitative proteomics combined with bioinformatic analysis was performed on retinal protein extracts from ONC and sham-operated mice. Among the 1433 proteins detected, 121 proteins were differentially expressed in the retina of ONC mice. Further bioinformatic analysis showed that various metabolic pathways, including glutamate metabolism and γ-aminobutyric acid (GABA) synthesis, were significantly dysregulated in the injured mouse retinas. Glutamate decarboxylase 1 (GAD1) is the enzyme that converts glutamate into GABA, which was significantly up-regulated during ONC injury. Exogenous GAD1 treatment increased retinal ganglion cell (RGC) survival in the ONC-injured retina. In addition, changes in GAD1 expression were also observed in several other ophthalmic diseases. Vascular endothelial growth factor B (VEGF-B) has previously been reported to protect RGCs from apoptosis and positively regulated the expression of GAD1 in the retina. Notably, combination treatment with GAD1 and VEGF-B also provided strong protection against injury-induced RGC apoptosis. These results suggest that GAD1 expression may serve as an intrinsic protective mechanism that is commonly activated during retinal injury. Targeting GAD1 may serve as a potential strategy to treat optic neurodegenerative diseases.


Assuntos
Traumatismos do Nervo Óptico , Células Ganglionares da Retina , Animais , Apoptose/fisiologia , Modelos Animais de Doenças , Glutamato Descarboxilase , Glutamatos/metabolismo , Camundongos , Compressão Nervosa , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/metabolismo , Fator B de Crescimento do Endotélio Vascular/metabolismo , Ácido gama-Aminobutírico/metabolismo
3.
World J Diabetes ; 12(4): 480-498, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33889292

RESUMO

BACKGROUND: Type 2 diabetes (T2D) is characterized by insufficient insulin secretion caused by defective pancreatic ß-cell function or insulin resistance, resulting in an increase in blood glucose. However, the mechanism involved in this lack of insulin secretion is unclear. The level of vascular endothelial growth factor B (VEGF-B) is significantly increased in T2D patients. The inactivation of VEGF-B could restore insulin sensitivity in db/db mice by reducing fatty acid accumulation. It is speculated that VEGF-B is related to pancreatic ß-cell dysfunction and is an important factor affecting ß-cell secretion of insulin. As an in vitro model of normal pancreatic ß-cells, the MIN6 cell line can be used to analyze the mechanism of insulin secretion and related biological effects. AIM: To study the role of VEGF-B in the insulin secretion signaling pathway in MIN6 cells and explore the effect of VEGF-B on blood glucose regulation. METHODS: The MIN6 mouse pancreatic islet ß-cell line was used as the model system. By administering exogenous VEGF-B protein or knocking down VEGF-B expression in MIN6 cells, we examined the effects of VEGF-B on insulin secretion, Ca2+ and cyclic adenosine monophosphate (cAMP) levels, and the insulin secretion signaling pathway. RESULTS: Exogenous VEGF-B inhibited the secretion of insulin and simultaneously reduced the levels of Ca2+ and cAMP in MIN6 cells. Exogenous VEGF-B also reduced the expression of phospholipase C gamma 1 (PLCγ1), phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase (AKT), and other proteins in the insulin secretion pathway. Upon knockdown of VEGF-B, MIN6 cells exhibited increased insulin secretion and Ca2+ and cAMP levels and upregulated expression of PLCγ1, PI3K, AKT, and other proteins. CONCLUSION: VEGF-B can regulate insulin secretion by modulating the levels of Ca2+ and cAMP. VEGF-B involvement in insulin secretion is related to the expression of PLCγ1, PI3K, AKT, and other signaling proteins. These results provide theoretical support and an experimental basis for the study of VEGF-B in the pathogenesis of T2D.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...