Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161106

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a common foodborne enteric pathogen that infects humans or mammals and colonizes the intestinal tract primarily by invading the host following ingestion. Meanwhile, ClpV is a core secreted protein of the bacterial type VI secretion system (T6SS). Because elucidating ClpV's role in the pathogenesis of T6SS is pivotal for revealing the virulence mechanism of Salmonella, in our study, clpV gene deletion mutants were constructed using a λ-red-based recombination system, and the effect of clpV mutation on SL1344's pathogenicity was examined in terms of stress resistance, motility, cytokine secretion, gut microbiota, and a BALB/c mouse model. Among the results, ClpV affected SL1344's motility and was also involved in cell invasion, adhesion, and intracellular survival in the MDBK cell model but did not affect invasion or intracellular survival in the RAW264.7 cell model. Moreover, clpV gene deletion significantly reduced the transcription levels of GBP2b, IFNB1, IL-6, NLRP3, NOS2, and TNF-α proinflammatory factor levels but significantly increased transcription levels of IL-4 and IL-10 anti-inflammatory factors. Last, ClpV appeared to closely relate to the pathogenicity of S. Typhimurium in vivo, which can change the gut environment and cause dysbiosis of gut microbiota. Our findings elucidate the functions of ClpV in S. Typhimurium and illustrating interactions between T6SS and gut microbiota help to clarify the mechanisms of the pathogenesis of foodborne diseases.

2.
J Am Chem Soc ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141782

RESUMO

This work introduces a new strategy of a single-atom nest catalyst, whereby several single atoms are positioned closely, aiming to achieve the dual benefits of high atom-utilization efficiency while avoiding the steric hindrance in the coupling reaction. As a proof of concept, Pt single-atom nests, where the adjacent Pt single atoms are approximately 4 Å apart, are precisely engineered on the TiO2 photocatalyst for photocatalytic non-oxidative coupling of methane. The Pt single-atom nest photocatalyst demonstrates remarkable activity, achieving a C2H6 yield and turnover frequency of 251.6 µmol gcat-1 h-1 and 20 h-1, respectively, representing a 3.2-fold improvement compared to the Pt single-atom photocatalyst. Density functional theory calculations reveal that the Pt single-atom nest can significantly decrease the energy barrier for the activation of both CH4 molecules in the coupling process.

3.
Neural Netw ; 179: 106520, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39024709

RESUMO

Unsupervised representation learning (URL) is still lack of a reasonable operator (e.g. convolution kernel) for exploring meaningful structural information from generic data including vector, image and tabular data. In this paper, we propose a simple end-to-end T-distributed Stochastic Neighbor Network (TsNet) for URL with clustering downstream task. Concretely, our TsNet model has three major components: (1) an adaptive connectivity distribution learning module is presented to construct a pairwise graph for preserving the local structure of generic data; (2) a T-distributed stochastic neighbor embedding based loss function is designed to learn a transformation between embeddings and original data, which improves the discrimination of representations; (3) a nonlinear parametric mapping is learned via our TsNet on an unsupervised generalized manner, which can address the "out-of-sample" issue. By combining these components, our method is able to considerably outperform previous related unsupervised learning approaches on visualization and clustering of generic data. A simple deep neural network equipped on our model respectively achieves 74.90%, 76.56% ACC and NMI, which is 8% relative improvement over previous state-of-the-art on real single-cell RNA-sequencing (scRNA-seq) datasets clustering.

4.
J Environ Manage ; 367: 122041, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39083934

RESUMO

RO process is commonly used to treat and reuse manganese-containing industrial wastewater. Nevertheless, even after undergoing multi-stage treatment, the secondary biochemical effluent still exhibits a high concentration of Mn2+ coupled with organics entering the RO system, leading to membrane fouling. In this work, we systematically analyze the RO membrane organic fouling processes and mechanisms, considering the coexistence of Mn2+ with humic acid (HA), sodium alginate (SA), bovine serum albumin (BSA) and their mixtures (HBS). The impact of Mn2+ on membrane fouling was HBS > SA > HA > BSA, controlling polysaccharide pollutant concentrations should be a priority for mitigating membrane fouling. In the presence of Mn2+ with HA, SA, or HBS, membrane fouling is primarily attributed to the complexation of organics and Mn2+ and the facilitation of interfacial interaction energy. RO membrane BSA fouling was not directly affected by Mn2+, the addition of Mn2+ induced a salting-out effect, leading to the deposition of BSA in a single molecular on the membrane. Simultaneously, adhesion energy hinders the deposition of BSA on the membrane, resulting in milder membrane fouling. This study provided the theoretical basis and suggestions for RO membrane organic fouling control in the presence of Mn2+.


Assuntos
Substâncias Húmicas , Manganês , Membranas Artificiais , Manganês/química , Substâncias Húmicas/análise , Soroalbumina Bovina/química , Alginatos/química , Águas Residuárias/química , Incrustação Biológica/prevenção & controle
5.
Cell Genom ; 4(8): 100626, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39084227

RESUMO

Understanding the roles played by centromeres in chromosome evolution and speciation is complicated by the fact that centromeres comprise large arrays of tandemly repeated satellite DNA, which hinders high-quality assembly. Here, we used long-read sequencing to generate nearly complete genome assemblies for four karyotypically diverse Papaver species, P. setigerum (2n = 44), P. somniferum (2n = 22), P. rhoeas (2n = 14), and P. bracteatum (2n = 14), collectively representing 45 gapless centromeres. We identified four centromere satellite (cenSat) families and experimentally validated two representatives. For the two allopolyploid genomes (P. somniferum and P. setigerum), we characterized the subgenomic distribution of each satellite and identified a "homogenizing" phase of centromere evolution in the aftermath of hybridization. An interspecies comparison of the peri-centromeric regions further revealed extensive centromere-mediated chromosome rearrangements. Taking these results together, we propose a model for studying cenSat competition after hybridization and shed further light on the complex role of the centromere in speciation.


Assuntos
Centrômero , Evolução Molecular , Papaver , Centrômero/genética , Papaver/genética , Especiação Genética , Cromossomos de Plantas/genética , DNA Satélite/genética , Cariótipo
6.
Nano Lett ; 24(31): 9666-9674, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39072504

RESUMO

Herein, we report a high-density dual-structure single-atom catalyst (SAC) by creating a large number of vacancies of O and Ti in two-dimensional (2D) Ti3C2 to immobilize Pt atoms (SA Pt-Ti3C2). The SA Pt-Ti3C2 showed excellent performance toward the pH-universal electrochemical hydrogen evolution reaction (HER) and multimodal sensing. For HER catalysis, compared to the commercial 20 wt % Pt/C, the Pt mass activities of SA Pt-Ti3C2 at the overpotentials of ∼30 and 110 mV in acid and alkaline media are 45 and 34 times higher, respectively. More importantly, during the alkaline HER process, an interesting synergetic effect between Pt-C and Pt-Ti sites that dominated the Volmer and Heyrovsky steps, respectively, was revealed. Moreover, the SA Pt-Ti3C2 catalyst exhibited high sensitivity (0.62-2.65 µA µM-1) and fast response properties for the multimodal identifications of ascorbic acid, dopamine, uric acid, and nitric oxide under the assistance of machine learning.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124759, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38955068

RESUMO

Acetaminophen, also known as paracetamol (APAP), is a commonly used over-the-counter medication that is often used to treat headaches, toothaches, joint pain, muscle pain, and to lower body temperature. However, overdose can lead to liver damage, gastrointestinal distress, kidney damage, and cardiovascular disease. Therefore, it is very important to establish a method to quickly detect APAP. A novel "ON-OFF-ON" colorimetric and fluorescence dual-signal sensing system was constructed for the quantitative detection of APAP based on 5,10,15,20-tetrakis(4-sulphonatophenyl) porphyrin (TSPP) dual-signal probe. The absorbance and fluorescence intensity of TSPP respectively were quenched when Fe3+ was introduced into TSPP solution. At this point, the color of the corresponding solution changed from red to green. The absorbance and fluorescence intensity of TSPP respectively were restored when APAP was added to the TSPP-Fe3+ system. At this time, the color of the solution changed from green to colorless. Therefore, an "ON-OFF-ON" dual-signal sensing study of APAP were constructed using TSPP as the colorimetric and fluorescent probe. The proposed colorimetric sensing system had a wide linear range in the 13.12 mM âˆ¼ 23.20 mM with 0.11 mM of limit of detection (LOD, S/N = 3). And the proposed fluorescence sensing system had a wide linear range in the 3.45 mM âˆ¼ 12.50 mM and 41.67 mM âˆ¼ 65.22 mM with 0.83 mM of limit of detection (LOD, S/N = 3). The dual-signal sensing system were applied to the APAP detection of real samples.


Assuntos
Acetaminofen , Colorimetria , Porfirinas , Espectrometria de Fluorescência , Colorimetria/métodos , Espectrometria de Fluorescência/métodos , Acetaminofen/análise , Porfirinas/química , Limite de Detecção , Ferro/análise , Corantes Fluorescentes/química , Humanos
8.
Vet Sci ; 11(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39057975

RESUMO

Mycotoxins are secondary metabolites produced by several fungi and moulds that exert toxicological effects on animals including immunotoxicity, genotoxicity, hepatotoxicity, teratogenicity, and neurotoxicity. However, the toxicological mechanisms of mycotoxins are complex and unclear. The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is a multimeric cytosolic protein complex composed of the NLRP3 sensor, ASC adapter protein, and caspase-1 effector. Activation of the NLRP3 inflammasome plays a crucial role in innate immune defence and homeostatic maintenance. Recent studies have revealed that NLRP3 inflammasome activation is linked to tissue damage and inflammation induced by mycotoxin exposure. Thus, this review summarises the latest advancements in research on the roles of NLRP3 inflammasome activation in the pathogenesis of mycotoxin exposure. The effects of exposure to multiple mycotoxins, including deoxynivalenol, aflatoxin B1, zearalenone, T-2 toxin, ochratoxin A, and fumonisim B1, on pyroptosis-related factors and inflammation-related factors in vitro and in vivo and the pharmacological inhibition of specific and nonspecific NLRP3 inhibitors are summarized and examined. This comprehensive review contributes to a better understanding of the role of the NLRP3 inflammasome in toxicity induced by mycotoxin exposure and provides novel insights for pharmacologically targeting NLRP3 as a novel anti-inflammatory agent against mycotoxin exposure.

9.
Bioresour Technol ; 406: 130957, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876283

RESUMO

The osmotic membrane bioreactor (OMBR) is a novel wastewater treatment and resource recovery technology combining forward osmosis (FO) and membrane bioreactor. It has attracted attention for its low energy consumption and high contaminant removal performance. However, in the long-term operation, OMBR faces the problem of salt accumulation due to high salt rejection and reverse salt flux, which affects microbial activity and contaminants removal efficiency. This review analyzed the feasibility of screening salt-tolerant microorganisms and determining salinity thresholds to improve the salt tolerance of OMBR. Combined with recent research, the inhibition strategies for salt accumulation were reviewed, including the draw solution, FO membrane, operating conditions and coupling with other systems. It is hoped to provide a theoretical basis and practical guidance for the further development of OMBR. Finally, future research directions were prospected. This review provides new insights for achieving stable operation of OMBR and promotes its wide application.


Assuntos
Reatores Biológicos , Membranas Artificiais , Osmose , Tolerância ao Sal/fisiologia , Purificação da Água/métodos , Águas Residuárias/química , Salinidade
10.
J Ethnopharmacol ; 331: 118282, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701935

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Sang Yu granule (SY), a traditional Chinese medicine prescription of Xijing Hospital, was developed based on the Guanyin powder in the classical prescription "Hong's Collection of Proven Prescriptions" and the new theory of modern Chinese medicine. It has been proved to have a certain therapeutic effect on drug-induced liver injury (DILI), but the specific mechanism of action is still unclear. AIM OF STUDY: Aim of the study was to explore the effect of SangYu granule on treating drug-induced liver injury induced by acetaminophen in mice. MATERIALS AND METHODS: The chemical composition of SY, serum, and liver tissue was analyzed using ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry. To assess hepatic function, measurements were taken using kits for total bile acids, as well as serum AST, ALT, and ALP activity. Concentrations of IL-1ß and TNF-α in serum were quantified using ELISA kits. Transcriptome Sequencing Analysis and 2bRAD-M microbial diversity analysis were employed to evaluate gene expression variance in liver tissue and fecal microbiota diversity among different groups, respectively. Western blotting was performed to observe differences in the activation levels of FXR, SHP, CYP7A1 and PPARα in the liver, and the levels of FXR and FGF-15 genes and proteins in the ileum of mice. Additionally, fecal microbiota transplantation (FMT) experiments were conducted to investigate the potential therapeutic effect of administering the intestinal microbial suspension from mice treated with SY on drug-induced liver injury. RESULTS: SY treatment exhibited significant hepatoprotective effects in mice, effectively ameliorating drug-induced liver injury while concurrently restoring intestinal microbial dysbiosis. Furthermore, SY administration demonstrated a reduction in the concentration of total bile acids, the expression of FXR and SHP proteins in the liver was up-regulated, CYP7A1 protein was down-regulated, and the expressions of FXR and FGF-15 proteins in the ileum were up-regulated. However, no notable impact on PPARα was observed. Furthermore, results from FMT experiments indicated that the administration of fecal suspensions derived from mice treated with SY did not yield any therapeutic benefits in the context of drug-induced liver injury. CONCLUSION: The aforementioned findings strongly suggest that SY exerts a pronounced ameliorative effect on drug-induced liver injury through its ability to modulate the expression of key proteins involved in bile acid secretion, thereby preserving hepato-enteric circulation homeostasis.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Fígado , PPAR alfa , Animais , Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , PPAR alfa/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos , Colesterol 7-alfa-Hidroxilase/metabolismo , Colesterol 7-alfa-Hidroxilase/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/sangue , Ácidos e Sais Biliares/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética
11.
Environ Sci Technol ; 58(20): 8932-8945, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38710016

RESUMO

A significant challenge that warrants attention is the influence of eutrophication on the biogeochemical cycle of emerging contaminants (ECs) in aquatic environments. Antibiotics pollution in the eutrophic Pearl River in South China was examined to offer new insights into the effects of eutrophication on the occurrence, air-water exchange fluxes (Fair-water), and vertical sinking fluxes (Fsinking) of antibiotics. Antibiotics transferred to the atmosphere primarily through aerosolization controlled by phytoplankton biomass and significant spatiotemporal variations were observed in the Fair-water of individual antibiotics throughout all sites and seasons. The Fsinking of ∑AB14 (defined as a summary of 14 antibiotics) was 750.46 ± 283.19, 242.71 ± 122.87, and 346.74 ± 249.52 ng of m-2 d-1 in spring, summer, and winter seasons. Eutrophication indirectly led to an elevated pH, which reduced seasonal Fair-water of antibiotics, sediment aromaticity, and phytoplankton hydrophobicity, thereby decreasing antibiotic accumulation in sediments and phytoplankton. Negative correlations were further found between Fsinking and the water column daily loss of antibiotics with phytoplankton biomass. The novelty of this study is to provide new complementary knowledge for the regulation mechanisms of antibiotics by phytoplankton biological pump, offering novel perspectives and approaches to understanding the coupling between eutrophication and migration and fate of antibiotics in a subtropical eutrophic river.


Assuntos
Antibacterianos , Eutrofização , Rios , Rios/química , Antibacterianos/análise , Fitoplâncton , Poluentes Químicos da Água/análise , Monitoramento Ambiental , China , Estações do Ano
12.
AMB Express ; 14(1): 39, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647736

RESUMO

Interactions between microorganisms and plants can stimulate plant growth and promote nitrogen cycling. Nitrogen fertilizers are routinely used in agriculture to improve crop growth and yield; however, poor use efficiency impairs the optimal utilization of such fertilizers. Differences in the microbial diversity and plant growth of rice soil under different nitrogen application conditions and the expression of nitrogen-use efficiency-related genes have not been previously investigated. Therefore, this study investigates how nitrogen application and nitrogen-use efficiency-related gene NRT1.1B expression affect the soil microbial diversity and growth indices of two rice varieties, Huaidao 5 and Xinhuai 5. In total, 103,463 and 98,427 operational taxonomic units were detected in the soils of the Huaidao 5 and Xinhuai 5 rice varieties, respectively. The Shannon and Simpson indices initially increased and then decreased, whereas the Chao and abundance-based coverage estimator indices decreased after the application of nitrogen fertilizer. Nitrogen fertilization also reduced soil bacterial diversity and richness, as indicated by the reduced abundances of Azotobacter recorded in the soils of both rice varieties. Nitrogen application initially increased and then decreased the grain number per panicle, yield per plant, root, stem, and leaf nitrogen, total nitrogen content, glutamine synthetase, nitrate reductase, urease, and root activities of both varieties. Plant height showed positive linear trends in response to nitrogen application, whereas thousand-grain weights showed a negative trend. Our findings may be used to optimize nitrogen fertilizer use for rice cultivation and develop crop-variety-specific strategies for nitrogen fertilizer application.

13.
BMC Genomics ; 25(1): 356, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600443

RESUMO

BACKGROUND: Centromeres play a crucial and conserved role in cell division, although their composition and evolutionary history in green algae, the evolutionary ancestors of land plants, remains largely unknown. RESULTS: We constructed near telomere-to-telomere (T2T) assemblies for two Trebouxiophyceae species, Chlorella sorokiniana NS4-2 and Chlorella pyrenoidosa DBH, with chromosome numbers of 12 and 13, and genome sizes of 58.11 Mb and 53.41 Mb, respectively. We identified and validated their centromere sequences using CENH3 ChIP-seq and found that, similar to humans and higher plants, the centromeric CENH3 signals of green algae display a pattern of hypomethylation. Interestingly, the centromeres of both species largely comprised transposable elements, although they differed significantly in their composition. Species within the Chlorella genus display a more diverse centromere composition, with major constituents including members of the LTR/Copia, LINE/L1, and LINE/RTEX families. This is in contrast to green algae including Chlamydomonas reinhardtii, Coccomyxa subellipsoidea, and Chromochloris zofingiensis, in which centromere composition instead has a pronounced single-element composition. Moreover, we observed significant differences in the composition and structure of centromeres among chromosomes with strong collinearity within the Chlorella genus, suggesting that centromeric sequence evolves more rapidly than sequence in non-centromeric regions. CONCLUSIONS: This study not only provides high-quality genome data for comparative genomics of green algae but gives insight into the composition and evolutionary history of centromeres in early plants, laying an important foundation for further research on their evolution.


Assuntos
Chlorella , Humanos , Chlorella/genética , Centrômero/genética , Plantas/genética , Elementos de DNA Transponíveis , Telômero/genética
14.
Water Res ; 256: 121592, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626614

RESUMO

The cost-effective and environment-friendly sulfur-driven autotrophic denitrification (SdAD) process has drawn significant attention for advanced nitrogen removal from low carbon-to-nitrogen (C/N) ratio wastewater in recent years. However, achieving efficient nitrogen removal and maintaining system stability of SdAD process in treating low C/N landfill leachate treatment have been a major challenge. In this study, a novel electrochemical-coupled sulfur-driven autotrophic denitrification (ESdAD) system was developed and compared with SdAD system through a long-term continuous study. Superior nitrogen removal performance (removal efficiency of 89.1 ± 2.5 %) was achieved in ESdAD system compared to SdAD process when treating raw landfill leachate (influent total nitrogen (TN) concentration of 241.7 ± 36.3 mg-N/L), and the effluent TN concentration of ESdAD bioreactor was as low as 24.8 ± 5.1 mg-N/L, which meets the discharge standard of China (< 40 mg N/L). Moreover, less sulfate production rate (1.3 ± 0.2 mg SO42--S/mgNOx--N vs 1.7 ± 0.2 mg SO42--S/mgNOx--N) and excellent pH modulation (pH of 6.9 ± 0.2 vs 5.8 ± 0.4) were also achieved in the ESdAD system compared to SdAD system. The improvement of ESdAD system performance was contributed to coexistence and interaction of heterotrophic bacteria (e.g., Rhodanobacter, Thermomonas, etc.), sulfur autotrophic bacteria (e.g., Thiobacillus, Sulfurimonas, Ignavibacterium etc.) and hydrogen autotrophic bacteria (e.g., Thauera, Comamonas, etc.) under current stimulation. In addition, microbial nitrogen metabolic activity, including functional enzyme (e.g., Nar and Nir) activities and electron transfer capacity of extracellular polymeric substances (EPS) and cytochrome c (Cyt-C), were also enhanced during current stimulation, which facilitated the nitrogen removal and maintained system stability. These findings suggested that ESdAD is an effective and eco-friendly process for advanced nitrogen removal for low C/N wastewater.


Assuntos
Processos Autotróficos , Reatores Biológicos , Desnitrificação , Nitrogênio , Enxofre , Poluentes Químicos da Água , Nitrogênio/metabolismo , Enxofre/metabolismo , Poluentes Químicos da Água/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Técnicas Eletroquímicas
15.
J Am Chem Soc ; 146(22): 15320-15330, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38683738

RESUMO

Palladium hydrides (PdHx) are pivotal in both fundamental research and practical applications across a wide spectrum. PdHx nanocrystals, synthesized by heating in dimethylformamide (DMF), exhibit remarkable stability, granting them widespread applications in the field of electrocatalysis. However, this stability appears inconsistent with their metastable nature. The substantial challenges in characterizing nanoscale structures contribute to the limited understanding of this anomalous phenomenon. Here, through a series of well-conceived experimental designs and advanced characterization techniques, including aberration-corrected scanning transmission electron microscopy (AC-STEM), in situ X-ray diffraction (XRD), and time-of-flight secondary ion mass spectrometry (TOF-SIMS), we have uncovered evidence that indicates the presence of C and N within the lattice of Pd (PdCxNy), rather than H (PdHx). By combining theoretical calculations, we have thoroughly studied the potential configurations and thermodynamic stability of PdCxNy, demonstrating a 2.5:1 ratio of C to N infiltration into the Pd lattice. Furthermore, we successfully modulated the electronic structure of Pd nanocrystals through C and N doping, enhancing their catalytic activity in methanol oxidation reactions. This breakthrough provides a new perspective on the structure and composition of Pd-based nanocrystals infused with light elements, paving the way for the development of advanced catalytic materials in the future.

16.
Environ Sci Technol ; 58(11): 5024-5034, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38454313

RESUMO

Detecting cyanobacteria in environments is an important concern due to their crucial roles in ecosystems, and they can form blooms with the potential to harm humans and nonhuman entities. However, the most widely used methods for high-throughput detection of environmental cyanobacteria, such as 16S rRNA sequencing, typically provide above-species-level resolution, thereby disregarding intraspecific variation. To address this, we developed a novel DNA microarray tool, termed the CyanoStrainChip, that enables strain-level comprehensive profiling of environmental cyanobacteria. The CyanoStrainChip was designed to target 1277 strains; nearly all major groups of cyanobacteria are included by implementing 43,666 genome-wide, strain-specific probes. It demonstrated strong specificity by in vitro mock community experiments. The high correlation (Pearson's R > 0.97) between probe fluorescence intensities and the corresponding DNA amounts (ranging from 1-100 ng) indicated excellent quantitative capability. Consistent cyanobacterial profiles of field samples were observed by both the CyanoStrainChip and next-generation sequencing methods. Furthermore, CyanoStrainChip analysis of surface water samples in Lake Chaohu uncovered a high intraspecific variation of abundance change within the genus Microcystis between different severity levels of cyanobacterial blooms, highlighting two toxic Microcystis strains that are of critical concern for Lake Chaohu harmful blooms suppression. Overall, these results suggest a potential for CyanoStrainChip as a valuable tool for cyanobacterial ecological research and harmful bloom monitoring to supplement existing techniques.


Assuntos
Cianobactérias , Microcystis , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Ribossômico 16S/genética , Ecossistema , Proliferação Nociva de Algas , Cianobactérias/genética , Lagos/microbiologia , Microcystis/genética
17.
Foods ; 13(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38397507

RESUMO

Zearalenone (ZEN) is considered one of the most serious mycotoxins contaminating grains and their by-products, causing significant economic losses in the feed and food industries. Biodegradation pathways are currently considered the most efficient solution to remove ZEN contamination from foods. However, low degradation rates and vulnerability to environmental impacts limit the application of biodegradation pathways. Therefore, the main research objective of this article was to screen strains that can efficiently degrade ZEN and survive under harsh conditions. This study successfully isolated a new strain L9 which can efficiently degrade ZEN from 108 food ingredients. The results of sequence alignment showed that L9 is Bacillus velezensis. Meanwhile, we found that the L9 degradation rate reached 91.14% at 24 h and confirmed that the primary degradation mechanism of this strain is biodegradation. The strain exhibits resistance to high temperature, acid, and 0.3% bile salts. The results of whole-genome sequencing analysis showed that, it is possible that the strain encodes the key enzyme, such as chitinase, carboxylesterases, and lactone hydrolase, that work together to degrade ZEN. In addition, 227 unique genes in this strain are primarily involved in its replication, recombination, repair, and protective mechanisms. In summary, we successfully excavated a ZEN-degrading, genetically distinct strain of Bacillus velezensis that provides a solid foundation for the detoxification of feed and food contamination in the natural environment.

18.
Water Res ; 252: 121226, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309071

RESUMO

The extensive exploration of antibiotic biodegradation by antibiotic-degrading bacteria in biological wastewater treatment processes has left a notable gap in understanding the behavior of these bacteria when exposed to antibiotics and the initiation of biodegradation processes. This study, therefore, delves into the adhesive behavior of Paraclostridium bifermentans, isolated from a bioreactor treating ciprofloxacin-laden wastewater, towards ciprofloxacin molecules. For the first time, this behavior is observed and characterized through quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy. The investigation further extends to identify key regulatory factors and mechanisms governing this adhesive behavior through a comparative proteomics analysis. The results reveal the dominance of extracellular proteins, particularly those involved in nucleotide binding, hydrolase, and transferase, in the adhesion process. These proteins play pivotal roles through direct chemical binding and the regulation of signaling molecule. Furthermore, QCM-D measurements provide evidence that transferase-related signaling molecules, especially tyrosine, augment the binding between ciprofloxacin and transferases, resulting in enhance ciprofloxacin removal by P. bifermentans (increased by ∼1.2-fold). This suggests a role for transferase-related signaling molecules in manipulating the adhesive behavior of P. bifermentans towards ciprofloxacin. These findings contribute to a new understanding of the prerequisites for antibiotic biodegradation and offer potential strategies for improving the application of antibiotic-degrading bacteria in the treatment of antibiotics-laden wastewater.


Assuntos
Antibacterianos , Ciprofloxacina , Antibacterianos/metabolismo , Ciprofloxacina/metabolismo , Águas Residuárias , Biodegradação Ambiental , Bactérias/metabolismo , Proteínas , Transferases/metabolismo
19.
Bioresour Technol ; 396: 130421, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320713

RESUMO

Large quantities of greenhouse gases (GHGs) are emitted into the atmosphere during wastewater treatment. In this study, GHG and microbial samples were collected from four wastewater treatment plants (WWTPs), and their differences and relationships were assessed. The study showed that, compared with conventionally constructed WWTPs, well-established gas collection systems in underground WWTPs facilitate comprehensive collection and accurate accounting of GHGs. In aboveground WWTPs, capped anoxic ponds promote methane production releasing it at 2-8 times the rate of uncapped emissions, in contrast to nitrous oxide emissions. Moreover, a stable subsurface environment allows for smaller fluctuations in daily GHG emissions and higher microbial diversity and abundance. This study highlights differences in GHG emission fluxes and microbial communities in differently constructed WWTPs, which are useful for control and accurate accounting of GHG emissions.


Assuntos
Gases de Efeito Estufa , Microbiota , Purificação da Água , Gases de Efeito Estufa/análise , Águas Residuárias , Metano/análise
20.
J Hazard Mater ; 465: 133394, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38211522

RESUMO

Discarded cefradine pellets (DCP) as the hazardous wastes contain lots of bioavailable sucrose. Anaerobic digestion (AD) may be a promising technology for treating DCP, achieving dual goals of waste treatment and resource recovery. However, high concentration of cefradine will inhibit the AD process. This study applied thermo-alkaline pretreatment (TAP) to remove cefradine and improve the AD performance of DCP. Around 95% cefradine could be degraded to different intermediate degradation products (TPs) in TAP at optimal condition, and hydrolysis and hydrogenation were the main degradation pathways. Quantitative structure-activity relationship analysis indicated that the main TPs exhibited lower toxicity than cefradine, and DCP residues after TAP were almost not toxic to E. coli K12 and B. subtilis growth by antibacterial activity analysis. Therefore, TAP promoted the biomethane yield in AD of DCP residues (274.74 mL/g COD), which was 1.91 times that of control group. Besides, compared to control group, final cefradine concentrations in liquids and sludge were significantly decreased in AD system with TAP, lowering environmental risk and indicating stronger prospect for process application. Microbiological analysis revealed that acidogens (Macellibacteroides, Bacteroides), syntrophs (Syntrophobacter, Syntrophorhabdus), and acetoclastic Methanosaeta were enriched in AD system with TAP, which contributed to improving AD performance of DCP.


Assuntos
Antibacterianos , Cefradina , Anaerobiose , Escherichia coli/metabolismo , Eliminação de Resíduos Líquidos/métodos , Esgotos/química , Metano/metabolismo , Reatores Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...