Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 21749, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294268

RESUMO

Implant-related infections pose significant challenges to orthopedic surgeries due to the high risk of severe complications. The widespread use of bioactive prostheses in joint replacements, featuring roughened surfaces and tight integration with the bone marrow cavity, has facilitated bacterial proliferation and complicated treatment. Developing antibacterial coatings for orthopedic implants has been a key research focus in recent years to address this critical issue. Researchers have designed coatings using various materials and antibacterial strategies. In this study, we fabricated 3D-printed porous titanium rods, incorporated vancomycin-loaded mPEG750-b-PCL2500 gel, and coated them with a PCL layer. We then evaluated the antibacterial efficacy through both in vitro and in vivo experiments. Our coating passively inhibits bacterial biofilm formation and actively controls antibiotic release in response to bacterial growth, providing a practical solution for proactive and sustained infection control. This study utilized 3D printing technology to produce porous titanium rod implants simulating bioactive joint prostheses. The porous structure of the titanium rods was used to load a thermoresponsive gel, mPEG750-b-PCL2500 (PEG: polyethylene glycol; PCL: polycaprolactone), serving as a novel drug delivery system carrying vancomycin for controlled antibiotic release. The assembly was then covered with a PCL membrane that inhibits bacterial biofilm formation early in infection and degrades when exposed to lipase solutions, mimicking enzymatic activity during bacterial infections. This setup provides infection-responsive protection and promotes drug release. We investigated the coating's controlled release, antibacterial capability, and biocompatibility through in vitro experiments. We established a Staphylococcus aureus infection model in rabbits, implanting titanium rods in the femoral medullary cavity. We evaluated the efficacy and safety of the composite coating in preventing implant-related infections using imaging, hematology, and pathology. In vitro experiments demonstrated that the PCL membrane stably protects encapsulated vancomycin during PBS immersion. The PCL membrane rapidly degraded at a lipase concentration of 0.2 mg/mL. The mPEG750-b-PCL2500 gel ensured stable and sustained vancomycin release, inhibiting bacterial growth. We investigated the antibacterial effect of the 3D-printed titanium material, coated with PCL and loaded with mPEG750-b-PCL2500 hydrogel, using a rabbit Staphylococcus aureus infection model. Imaging, hematology, and histopathology confirmed that our composite antibacterial coating exhibited excellent antibacterial effects and infection prevention, with good safety in trials. Our results indicate that the composite antibacterial coating effectively protects vancomycin in the hydrogel from premature release in the absence of bacterial infection. The outer PCL membrane inhibits bacterial growth and prevents biofilm formation. Upon contact with bacterial lipase, the PCL membrane rapidly degrades, releasing vancomycin for antibacterial action. The mPEG750-b-PCL2500 gel provides stable and sustained vancomycin release, prolonging its antibacterial effects. Our composite antibacterial coating demonstrates promising potential for clinical application.


Assuntos
Antibacterianos , Hidrogéis , Poliésteres , Impressão Tridimensional , Titânio , Vancomicina , Titânio/química , Vancomicina/farmacologia , Vancomicina/administração & dosagem , Vancomicina/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Poliésteres/química , Animais , Hidrogéis/química , Coelhos , Staphylococcus aureus/efeitos dos fármacos , Liberação Controlada de Fármacos , Porosidade , Biofilmes/efeitos dos fármacos , Polietilenoglicóis/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/prevenção & controle , Sistemas de Liberação de Medicamentos/métodos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia
2.
Front Endocrinol (Lausanne) ; 15: 1341366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384969

RESUMO

Purpose: Steroid-induced osteonecrosis of the femoral head (SONFH) is a refractory orthopedic hip joint disease that primarily affects middle-aged and young individuals. SONFH may be caused by ischemia and hypoxia of the femoral head, where mitochondria play a crucial role in oxidative reactions. Currently, there is limited literature on whether mitochondria are involved in the progression of SONFH. Here, we aim to identify and validate key potential mitochondrial-related genes in SONFH through bioinformatics analysis. This study aims to provide initial evidence that mitochondria play a role in the progression of SONFH and further elucidate the mechanisms of mitochondria in SONFH. Methods: The GSE123568 mRNA expression profile dataset includes 10 non-SONFH (non-steroid-induced osteonecrosis of the femoral head) samples and 30 SONFH samples. The GSE74089 mRNA expression profile dataset includes 4 healthy samples and 4 samples with ischemic necrosis of the femoral head. Both datasets were downloaded from the Gene Expression Omnibus (GEO) database. The mitochondrial-related genes are derived from MitoCarta3.0, which includes data for all 1136 human genes with high confidence in mitochondrial localization based on integrated proteomics, computational, and microscopy approaches. By intersecting the GSE123568 and GSE74089 datasets with a set of mitochondrial-related genes, we screened for mitochondrial-related genes involved in SONFH. Subsequently, we used the good Samples Genes method in R language to remove outlier genes and samples in the GSE123568 dataset. We further used WGCNA to construct a scale-free co-expression network and selected the hub gene set with the highest connectivity. We then intersected this gene set with the previously identified mitochondrial-related genes to select the genes with the highest correlation. A total of 7 mitochondrial-related genes were selected. Next, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the selected mitochondrial-related genes using R software. Furthermore, we performed protein network analysis on the differentially expressed proteins encoded by the mitochondrial genes using STRING. We used the GSEA software to group the genes within the gene set in the GSE123568 dataset based on their coordinated changes and evaluate their impact on phenotype changes. Subsequently, we grouped the samples based on the 7 selected mitochondrial-related genes using R software and observed the differences in immune cell infiltration between the groups. Finally, we evaluated the prognostic significance of these features in the two datasets, consisting of a total of 48 samples, by integrating disease status and the 7 gene features using the cox method in the survival R package. We performed ROC analysis using the roc function in the pROC package and evaluated the AUC and confidence intervals using the ci function to obtain the final AUC results. Results: Identification and analysis of 7 intersecting DEGs (differentially expressed genes) were obtained among peripheral blood, cartilage samples, hub genes, and mitochondrial-related genes. These 7 DEGs include FTH1, LACTB, PDK3, RAB5IF, SOD2, and SQOR, all of which are upregulated genes with no intersection in the downregulated gene set. Subsequently, GO and KEGG pathway enrichment analysis revealed that the upregulated DEGs are primarily involved in processes such as oxidative stress, release of cytochrome C from mitochondria, negative regulation of intrinsic apoptotic signaling pathway, cell apoptosis, mitochondrial metabolism, p53 signaling pathway, and NK cell-mediated cytotoxicity. GSEA also revealed enriched pathways associated with hub genes. Finally, the diagnostic value of these key genes for hormone-related ischemic necrosis of the femoral head (SONFH) was confirmed using ROC curves. Conclusion: BID, FTH1, LACTB, PDK3, RAB5IF, SOD2, and SQOR may serve as potential diagnostic mitochondrial-related biomarkers for SONFH. Additionally, they hold research value in investigating the involvement of mitochondria in the pathogenesis of ischemic necrosis of the femoral head.


Assuntos
Necrose da Cabeça do Fêmur , Cabeça do Fêmur , Pessoa de Meia-Idade , Humanos , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/genética , DNA Mitocondrial , Mitocôndrias/genética , Esteroides/efeitos adversos , RNA Mensageiro/genética , beta-Lactamases , Proteínas de Membrana , Proteínas Mitocondriais
3.
J Med Internet Res ; 25: e37599, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36651587

RESUMO

BACKGROUND: Virtual and augmented reality (VAR) represents a combination of current state-of-the-art computer and imaging technologies and has the potential to be a revolutionary technology in many surgical fields. An increasing number of investigators have developed and applied VAR in hip-related surgery with the aim of using this technology to reduce hip surgery-related complications, improve surgical success rates, and reduce surgical risks. These technologies are beginning to be widely used in hip-related preoperative operation simulation and training, intraoperative navigation tools in the operating room, and postoperative rehabilitation. OBJECTIVE: With the aim of reviewing the current status of virtual reality (VR) and augmented reality (AR) in hip-related surgery and summarizing its benefits, we discussed and briefly described the applicability, advantages, limitations, and future perspectives of VR and AR techniques in hip-related surgery, such as preoperative operation simulation and training; explored the possible future applications of AR in the operating room; and discussed the bright prospects of VR and AR technologies in postoperative rehabilitation after hip surgery. METHODS: We searched the PubMed and Web of Science databases using the following key search terms: ("virtual reality" OR "augmented reality") AND ("pelvis" OR "hip"). The literature on basic and clinical research related to the aforementioned key search terms, that is, studies evaluating the key factors, challenges, or problems of using of VAR technology in hip-related surgery, was collected. RESULTS: A total of 40 studies and reports were included and classified into the following categories: total hip arthroplasty, hip resurfacing, femoral neck fracture, pelvic fracture, acetabular fracture, tumor, arthroscopy, and postoperative rehabilitation. Quality assessment could be performed in 30 studies. Among the clinical studies, there were 16 case series with an average score of 89 out of 100 points (89%) and 1 case report that scored 81 (SD 10.11) out of 100 points (81%) according to the Joanna Briggs Institute Critical Appraisal Checklist. Two cadaveric studies scored 85 of 100 points (85%) and 92 of 100 points (92%) according to the Quality Appraisal for Cadaveric Studies scale. CONCLUSIONS: VR and AR technologies hold great promise for hip-related surgeries, especially for preoperative operation simulation and training, feasibility applications in the operating room, and postoperative rehabilitation, and have the potential to assist orthopedic surgeons in operating more accurately and safely. More comparative studies are necessary, including studies focusing on clinical outcomes and cost-effectiveness.


Assuntos
Realidade Aumentada , Cirurgia Assistida por Computador , Realidade Virtual , Humanos , Cadáver , Salas Cirúrgicas , Cirurgia Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...