Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Am J Transl Res ; 15(1): 175-183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777826

RESUMO

Long non-coding RNA taurine-upregulated gene 1 (TUG1) plays pivotal roles in angiogenesis, an important mechanism of neural repair after intracerebral hemorrhage (ICH). However, the role of TUG1 in angiogenesis following ICH is not clear. Therefore, in this study, we investigated the role and the underlying mechanism of TUG1 in neurologic impairment and cerebral angiogenesis following ICH. The ICH rat model was established and then rats were injected with TUG1-expressing plasmid (pcDNA-TUG1) or miR-26a mimic, a critical regulator of VEGF-mediated angiogenesis. We confirmed the overexpression of TUG1 and miR-26a by qRT-PCR. The neurological deficits of ICH rats were evaluated by modified neurological severity scores. The expression of angiogenesis markers VEGF and CD31 were examined by immunohistochemistry and western blot. The interaction between TUG1 and miR-26a was determined by luciferase reporter assay. Our results showed that ICH caused a marked upregulation of TUG1 and a significant downregulation of miR-26a. TUG1 overexpression led to the deterioration of neurologic function and inhibited cerebral angiogenesis in ICH rats. In contrast, overexpression of miR-26a alleviated the neurologic damage and promoted cerebral angiogenesis in ICH rats, but these could be attenuated by TUG1 overexpression. Furthermore, TUG1 directly bound to miR-26a and inhibited its expression. Importantly, TUG1 overexpression inhibited the expression of VEGF by targeting miR-26a. In conclusion, our results indicated that TUG1 aggravated ICH-mediated injury by suppressing angiogenesis by downregulating miR-26a. This suggests a rationale for targeting TUG1/miR-26a in the therapy of ICH.

2.
Biomed Res Int ; 2022: 1037525, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330459

RESUMO

Objective: Angiogenesis is one of the therapeutic targets of cerebral infarction. Long noncoding RNAs (lncRNAs) can regulate the pathological process of angiogenesis following ischemic stroke. Taurine-upregulated gene 1 (TUG1), an lncRNA, is correlated to ischemic stroke. We intended to determine the effect of TUG1 on angiogenesis following an ischemic stroke. Materials and Methods: Middle cerebral artery occlusion (MCAO) was adopted to build a focal ischemic model of the rat brain, and pcDNA-TUG1 and miR-26a mimics were injected into rats. Neurological function was estimated through modified neurological severity scores. The volume of focal brain infarction was calculated through 2,3,5-triphenyltetrazolium chloride staining. The level of TUG1 and miR-26a was measured by PCR. The expression of vascular endothelial growth factor (VEGF) and CD31 was checked using immunohistochemistry and western blot. The correlation between miR-26a and TUG1 was verified through a luciferase reporter assay. Results: TUG1 increased noticeably while miR-26a was markedly reduced in MCAO rats. Overexpression of miR-26a improved neurological function recovery and enhanced cerebral angiogenesis in MCAO rats. TUG1 overexpression aggravated neurological deficits and suppressed cerebral angiogenesis in MCAO rats. Bioinformatics analysis revealed that miR-26a was one of the predicted targets of TUG1. Furthermore, TUG1 combined with miR-26a to regulate angiogenesis. TUG1 overexpression antagonized the role of miR-26a in neurological recovery and angiogenesis in MCAO rats. Conclusions: TUG1/miR-26a, which may act as a regulatory axis in angiogenesis following ischemic stroke, can be considered a potential target for cerebral infarction therapy.


Assuntos
AVC Isquêmico , MicroRNAs , RNA Longo não Codificante , Ratos , Animais , MicroRNAs/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Taurina , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neovascularização Patológica/genética , Infarto da Artéria Cerebral Média/genética
3.
Exp Neurol ; 345: 113818, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34324860

RESUMO

Transcranial direct-current stimulation (tDCS) is proved safe and shows therapeutic effect in cerebral ischemic stroke in clinical trials. But the underlying molecular mechanisms remain unclear. Here we show that tDCS treatment reduces the infarct volume after rat cerebral ischemia-reperfusion (I/R) injury and results in functional improvement of stroke animals. At the cellular and molecular level, tDCS suppresses I/R-induced upregulation of Cezanne in the ischemic neurons. Cezanne inhibition confers neuroprotection after rat I/R and oxygen glucose deprivation (OGD) in the cortical neuronal cultures. Inhibiting Cezanne increases the level of SIRT6 that is downregulated in the ischemic neurons. Suppressing SIRT6 blocks Cezanne inhibition-induced neuroprotective effect and overexpressing SIRT6 attenuates OGD-induced neuronal death. We further show that downregulating Cezanne reduces DNA double-strand break (DSB) through upregulation of SIRT6 in OGD-insulted neurons. Together, this study suggests that Cezanne-dependent SIRT6-DNA DSB signaling pathway may mediate the neuroprotective effect of tDCS in ischemic neurons.


Assuntos
Isquemia Encefálica/metabolismo , Endopeptidases/biossíntese , Neuroproteção/fisiologia , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Animais , Isquemia Encefálica/terapia , Células Cultivadas , Feminino , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...