Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6136, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033145

RESUMO

Intrahepatic accumulation dominates organ distribution for most nanomedicines. However, obscure intrahepatic fate largely hampers regulation on their in vivo performance. Herein, PEGylated liposomal doxorubicin is exploited to clarify the intrahepatic fate of both liposomes and the payload in male mice. Kupffer cells initiate and dominate intrahepatic capture of liposomal doxorubicin, following to deliver released doxorubicin to hepatocytes with zonated distribution along the lobule porto-central axis. Increasing Kupffer cells capture promotes doxorubicin accumulation in hepatocytes, revealing the Kupffer cells capture-payload release-hepatocytes accumulation scheme. In contrast, free doxorubicin is overlooked by Kupffer cells, instead quickly distributing into hepatocytes by directly crossing fenestrated liver sinusoid endothelium. Compared to free doxorubicin, liposomal doxorubicin exhibits sustained metabolism/excretion due to the extra capture-release process. This work unveils the pivotal role of Kupffer cells in intrahepatic traffic of PEGylated liposomal therapeutics, and quantitively describes the intrahepatic transport/distribution/elimination process, providing crucial information for guiding further development of nanomedicines.


Assuntos
Doxorrubicina , Hepatócitos , Células de Kupffer , Fígado , Polietilenoglicóis , Células de Kupffer/metabolismo , Células de Kupffer/efeitos dos fármacos , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Animais , Polietilenoglicóis/química , Masculino , Fígado/metabolismo , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Camundongos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/farmacocinética , Lipossomos , Camundongos Endogâmicos C57BL
2.
Signal Transduct Target Ther ; 9(1): 150, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902241

RESUMO

This study aimed to develop a pan-genotypic and multifunctional small interfering RNA (siRNA) against hepatitis B virus (HBV) with an efficient delivery system for treating chronic hepatitis B (CHB), and explore combined RNA interference (RNAi) and immune modulatory modalities for better viral control. Twenty synthetic siRNAs targeting consensus motifs distributed across the whole HBV genome were designed and evaluated. The lipid nanoparticle (LNP) formulation was optimized by adopting HO-PEG2000-DMG lipid and modifying the molar ratio of traditional polyethylene glycol (PEG) lipid in LNP prescriptions. The efficacy and safety of this formulation in delivering siHBV (tLNP/siHBV) along with the mouse IL-2 (mIL-2) mRNA (tLNP/siHBVIL2) were evaluated in the rAAV-HBV1.3 mouse model. A siRNA combination (terms "siHBV") with a genotypic coverage of 98.55% was selected, chemically modified, and encapsulated within an optimized LNP (tLNP) of high efficacy and security to fabricate a therapeutic formulation for CHB. The results revealed that tLNP/siHBV significantly reduced the expression of viral antigens and DNA (up to 3log10 reduction; vs PBS) in dose- and time-dependent manners at single-dose or multi-dose frequencies, with satisfactory safety profiles. Further studies showed that tLNP/siHBVIL2 enables additive antigenic and immune control of the virus, via introducing potent HBsAg clearance through RNAi and triggering strong HBV-specific CD4+ and CD8+ T cell responses by expressed mIL-2 protein. By adopting tLNP as nucleic acid nanocarriers, the co-delivery of siHBV and mIL-2 mRNA enables synergistic antigenic and immune control of HBV, thus offering a promising translational therapeutic strategy for treating CHB.


Assuntos
Vírus da Hepatite B , Interleucina-2 , Nanopartículas , RNA Interferente Pequeno , Animais , Camundongos , Vírus da Hepatite B/genética , Interleucina-2/genética , Interleucina-2/imunologia , Interleucina-2/farmacologia , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/administração & dosagem , Nanopartículas/química , RNA Mensageiro/genética , Hepatite B Crônica/terapia , Hepatite B Crônica/genética , Hepatite B Crônica/virologia , Interferência de RNA , Hepatite B/terapia , Hepatite B/genética , Hepatite B/virologia , Terapêutica com RNAi , Lipossomos
3.
Plant Dis ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311792

RESUMO

Maize is the largest crop planted in China. Nine species of cyst nematodes have been reported to affect maize production. Heterodera zeae, H. avenae and Punctodera chalcoensis can cause significant maize yield losses annually (Luc et al. 2005). In 1971, the maize cyst nematode H. zeae was first detected in Rajasthan, India (Koshy et al. 1971). Subsequently, it has been reported in many other countries such as the United States, Greece, Pakistan, and Egypt. In China, H. zeae was first identified in the maize fields of Laibin City, Guangxi Zhuang Autonomous Region (Wu et al., 2017). Cui et al. (2020) identified H. zeae in a maize field of Yuzhou City, Henan Province of Central China in 2018. From 2018 to 2022, a survey of cyst-forming nematodes was conducted in Southwest China. Fifteen soil samples of about 500 g each were collected from Luding County, Ganzi Prefecture of Sichuan Province. No major aboveground symptoms were shown on maize, but a few females were observed on the roots of maize in one field. The cysts and second-stage juveniles (J2s) were collected from each soil sample using Cobb's screening gravity method. A total of 8.50±2.0 cysts per 100 ml of soil on the average were observed in the field. A thin subcrystalline layer was discernible only in young cysts. Morphological and molecular studies of cysts and J2s indicated that the nematodes were identified to be H. zeae in a maize-field. Morphologically, the cysts were in a lemon shape, light brown or pearly white in color. The vulval cone was prominent. Fenestra ambifenestrate, and semifenestra were separated by a fairly wide vulval bridge, fenestral length and width were variable, and the cyst wall was shown in a zigzag pattern. The J2s' body was in a vermiform, tapering at both ends, with a hyaline tail. Stylet was strongly developed with round or slightly anteriorly directed knobs. Morphological measurements of the cysts (n = 9) determined that the mean body length was 417.2 µm (403.6 to 439.4 µm), body width was 429.7 µm (397.6 to 456.9µm); length-width ratio was 1.4 (0.75 to 3); fenestra length was 525.3 µm (498.5 to 570.7 µm); and the mean semifenestra width was 458.6 µm (403.6 to 546.3 µm). Morphometric measurements of second-stage juveniles (n = 20) showed a body length of 419.7µm (355.8 to 492.5 µm); a stylet length of 20.8 µm (19.51 to 23.3µm); a tail length of 41.5 µm (20 to 49.4 µm); and a hyaline tail length of 20.7 µm (16.6 to 24 µm). The main morphological characteristics and measured values were basically consistent with those described by Cui et al. (2022), and all of which were similar to those of H. zeae. Amplification of DNA from random single cysts (n = 5) was conducted using the protocol described by Cui et al. (2022). The rDNA-internal transcribed spacer (ITS) was amplified and sequenced using a pair of universal primers TW81 (5'-GTTTCCGTAGGTGAA CCTGC-3') and AB28 (5'-ATATGCTTAAGTTCAGCGGGT-3'). The ITS sequences were deposited at GenBank with the accession number OR811029.1. Alignments of sequences showed an identity of 98% with H. zeae sequences from China (OP692769.2, MW785772.1) and the USA (GU145616.1), which were confirmed using a pair of species-specific primers HzF1 (5'-GGGGAGGTGAATGTGGG-3') and HzR1 (5'-CCTTTGGCAATCGGTGA-3') of H. zeae with a targeted PCR fragment of 393 bp (Cui et al. 2022). Pathogenicity was conducted and confirmed by infection and reproduction on maize. Seeds (cv. Zhengda 619) were sown in three pots that contained 150 ml of a sterile soil mixture (loamy soil: sand=1:1), and 5 cysts (103 eggs/cyst on the average) were inoculated in each pot at 25/30°C, under a 12-h dark/12-h light condition (Cui et al. 2023). Fifteen days after sowing, third- and fourth-stage juveniles were observed in the rootstained with acid fuchsin, and a total of 32 cysts per maize plant on the average were collected at 40 days after sowing. The new cysts' morphological and molecular characteristics were identical to the cysts from the original soil samples. To the best of our knowledge, this is the first report of H. zeae as a pathogen on maize in Sichuan Province, Southwest China. Our findings will be useful for management and further research of maize cyst nematodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...