Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
1.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189143, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936517

RESUMO

Transposable elements (TEs), comprising nearly 50% of the human genome, have transitioned from being perceived as "genomic junk" to key players in cancer progression. Contemporary research links TE regulatory disruptions with cancer development, underscoring their therapeutic potential. Advances in long-read sequencing, computational analytics, single-cell sequencing, proteomics, and CRISPR-Cas9 technologies have enriched our understanding of TEs' clinical implications, notably their impact on genome architecture, gene regulation, and evolutionary processes. In cancer, TEs, including long interspersed element-1 (LINE-1), Alus, and long terminal repeat (LTR) elements, demonstrate altered patterns, influencing both tumorigenic and tumor-suppressive mechanisms. TE-derived nucleic acids and tumor antigens play critical roles in tumor immunity, bridging innate and adaptive responses. Given their central role in oncology, TE-targeted therapies, particularly through reverse transcriptase inhibitors and epigenetic modulators, represent a novel avenue in cancer treatment. Combining these TE-focused strategies with existing chemotherapy or immunotherapy regimens could enhance efficacy and offer a new dimension in cancer treatment. This review delves into recent TE detection advancements, explores their multifaceted roles in tumorigenesis and immune regulation, discusses emerging diagnostic and therapeutic approaches centered on TEs, and anticipates future directions in cancer research.

2.
J Hematol Oncol ; 17(1): 37, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822399

RESUMO

Histone deacetylase (HDAC) serves as a critical molecular regulator in the pathobiology of various malignancies and have garnered attention as a viable target for therapeutic intervention. A variety of HDAC inhibitors (HDACis) have been developed to target HDACs. Many preclinical studies have conclusively demonstrated the antitumor effects of HDACis, whether used as monotherapy or in combination treatments. On this basis, researchers have conducted various clinical studies to evaluate the potential of selective and pan-HDACis in clinical settings. In our work, we extensively summarized and organized current clinical trials, providing a comprehensive overview of the current clinical advancements in targeting HDAC therapy. Furthermore, we engaged in discussions about several clinical trials that did not yield positive outcomes, analyzing the factors that led to their lack of anticipated therapeutic effectiveness. Apart from the experimental design factors, issues such as toxicological side effects, tumor heterogeneity, and unexpected off-target effects also contributed to these less-than-expected results. These challenges have naturally become significant barriers to the application of HDACis. Despite these challenges, we believe that advancements in HDACi research and improvements in combination therapies will pave the way or lead to a broad and hopeful future in the treatment of solid tumors.


Assuntos
Inibidores de Histona Desacetilases , Histona Desacetilases , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Animais , Ensaios Clínicos como Assunto , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Terapia de Alvo Molecular/métodos
3.
Adv Sci (Weinh) ; : e2306860, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864559

RESUMO

Breast tumor-initiating cells (BTICs) of triple-negative breast cancer (TNBC) tissues actively repair DNA and are resistant to treatments including chemotherapy, radiotherapy, and targeted therapy. Herein, it is found that a previously reported secreted protein, sclerostin domain containing 1 (SOSTDC1), is abundantly expressed in BTICs of TNBC cells and positively correlated with a poor patient prognosis. SOSTDC1 knockdown impairs homologous recombination (HR) repair, BTIC maintenance, and sensitized bulk cells and BTICs to Olaparib. Mechanistically, following Olaparib treatment, SOSTDC1 translocates to the nucleus in an importin-α dependent manner. Nuclear SOSTDC1 interacts with the N-terminus of the nucleoprotein, chromatin helicase DNA-binding factor (CHD1), to promote HR repair and BTIC maintenance. Furthermore, nuclear SOSTDC1 bound to ß-transducin repeat-containing protein (ß-TrCP) binding motifs of CHD1 is found, thereby blocking the ß-TrCP-CHD1 interaction and inhibiting ß-TrCP-mediated CHD1 ubiquitination and degradation. Collectively, these findings identify a novel nuclear SOSTDC1 pathway in regulating HR repair and BTIC maintenance, providing insight into the TNBC therapeutic strategies.

4.
Fundam Res ; 4(3): 678-689, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38933195

RESUMO

Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype. Molecular stratification and target therapy bring clinical benefit for TNBC patients, but it is difficult to implement comprehensive molecular testing in clinical practice. Here, using our multi-omics TNBC cohort (N = 425), a deep learning-based framework was devised and validated for comprehensive predictions of molecular features, subtypes and prognosis from pathological whole slide images. The framework first incorporated a neural network to decompose the tissue on WSIs, followed by a second one which was trained based on certain tissue types for predicting different targets. Multi-omics molecular features were analyzed including somatic mutations, copy number alterations, germline mutations, biological pathway activities, metabolomics features and immunotherapy biomarkers. It was shown that the molecular features with therapeutic implications can be predicted including the somatic PIK3CA mutation, germline BRCA2 mutation and PD-L1 protein expression (area under the curve [AUC]: 0.78, 0.79 and 0.74 respectively). The molecular subtypes of TNBC can be identified (AUC: 0.84, 0.85, 0.93 and 0.73 for the basal-like immune-suppressed, immunomodulatory, luminal androgen receptor, and mesenchymal-like subtypes respectively) and their distinctive morphological patterns were revealed, which provided novel insights into the heterogeneity of TNBC. A neural network integrating image features and clinical covariates stratified patients into groups with different survival outcomes (log-rank P < 0.001). Our prediction framework and neural network models were externally validated on the TNBC cases from TCGA (N = 143) and appeared robust to the changes in patient population. For potential clinical translation, we built a novel online platform, where we modularized and deployed our framework along with the validated models. It can realize real-time one-stop prediction for new cases. In summary, using only pathological WSIs, our proposed framework can enable comprehensive stratifications of TNBC patients and provide valuable information for therapeutic decision-making. It had the potential to be clinically implemented and promote the personalized management of TNBC.

5.
Nat Commun ; 15(1): 3752, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704400

RESUMO

While accurate mapping of strain distribution is crucial for assessing stress concentration and estimating fatigue life in engineering applications, conventional strain sensor arrays face a great challenge in balancing sensitivity and sensing density for effective strain mapping. In this study, we present a Fowler-Nordheim tunneling effect of monodispersed spiky carbon nanosphere array on polydimethylsiloxane as strain sensor arrays to achieve a sensitivity up to 70,000, a sensing density of 100 pixel cm-2, and logarithmic linearity over 99% within a wide strain range of 0% to 60%. The highly ordered assembly of spiky carbon nanospheres in each unit also ensures high inter-unit consistency (standard deviation ≤3.82%). Furthermore, this sensor array can conformally cover diverse surfaces, enabling accurate acquisition of strain distributions. The sensing array offers a convenient approach for mapping strain fields in various applications such as flexible electronics, soft robotics, biomechanics, and structure health monitoring.

6.
Cancer Biol Med ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752685

RESUMO

OBJECTIVE: Triple-negative breast cancer (TNBC) is a heterogeneous and aggressive cancer. Although our previous study classified primary TNBC into four subtypes, comprehensive longitudinal investigations are lacking. METHODS: We assembled a large-scale, real-world cohort comprised of 880 TNBC patients [465 early-stage TNBC (eTNBC) and 415 metastatic TNBC (mTNBC) patients] who were treated at Fudan University Shanghai Cancer Center. The longitudinal dynamics of TNBC subtypes during disease progression were elucidated in this patient cohort. Comprehensive analysis was performed to compare primary and metastatic lesions within specific TNBC subtypes. RESULTS: The recurrence and metastasis rates within 3 years after initial diagnosis in the eTNBC cohort were 10.1% (47/465). The median overall survival (OS) in the mTNBC cohort was 27.2 months [95% confidence interval (CI), 24.4-30.2 months], which indicated a poor prognosis. The prognostic significance of the original molecular subtypes in both eTNBC and mTNBC patients was confirmed. Consistent molecular subtypes were maintained in 77.5% of the patients throughout disease progression with the mesenchymal-like (MES) subtype demonstrating a tendency for subtype transition and brain metastasis. Additionally, a precision treatment strategy based on the metastatic MES subtype of target lesions resulted in improved progression-free survival in the FUTURE trial. CONCLUSIONS: Our longitudinal study comprehensively revealed the clinical characteristics and survival of patients with the original TNBC subtypes and validated the consistency of most molecular subtypes throughout disease progression. However, we emphasize the major importance of repeat pathologic confirmation of the MES subtype.

7.
BMC Plant Biol ; 24(1): 475, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816808

RESUMO

BACKGROUND: RNA editing in chloroplast and mitochondrion transcripts of plants is an important type of post-transcriptional RNA modification in which members of the multiple organellar RNA editing factor gene family (MORF) play a crucial role. However, a systematic identification and characterization of MORF members in Brassica napus is still lacking. RESULTS: In this study, a total of 43 MORF genes were identified from the genome of the Brassica napus cultivar "Zhongshuang 11". The Brassica napus MORF (BnMORF) family members were divided into three groups through phylogenetic analysis. BnMORF genes distributed on 14 chromosomes and expanded due to segmental duplication and whole genome duplication repetitions. The majority of BnMORF proteins were predicted to be localized to mitochondria and chloroplasts. The promoter cis-regulatory element analysis, spatial-temporal expression profiling, and co-expression network of BnMORF genes indicated the involvement of BnMORF genes in stress and phytohormone responses, as well as growth and development. CONCLUSION: This study provides a comprehensive analysis of BnMORF genes and lays a foundation for further exploring their physiological functions in Brassica napus.


Assuntos
Brassica napus , Família Multigênica , Filogenia , Proteínas de Plantas , Brassica napus/genética , Brassica napus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Edição de RNA , Perfilação da Expressão Gênica , Cloroplastos/genética , Cloroplastos/metabolismo
8.
Cancer Cell ; 42(4): 701-719.e12, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593782

RESUMO

Co-occurrence and mutual exclusivity of genomic alterations may reflect the existence of genetic interactions, potentially shaping distinct biological phenotypes and impacting therapeutic response in breast cancer. However, our understanding of them remains limited. Herein, we investigate a large-scale multi-omics cohort (n = 873) and a real-world clinical sequencing cohort (n = 4,405) including several clinical trials with detailed treatment outcomes and perform functional validation in patient-derived organoids, tumor fragments, and in vivo models. Through this comprehensive approach, we construct a network comprising co-alterations and mutually exclusive events and characterize their therapeutic potential and underlying biological basis. Notably, we identify associations between TP53mut-AURKAamp and endocrine therapy resistance, germline BRCA1mut-MYCamp and improved sensitivity to PARP inhibitors, and TP53mut-MYBamp and immunotherapy resistance. Furthermore, we reveal that precision treatment strategies informed by co-alterations hold promise to improve patient outcomes. Our study highlights the significance of genetic interactions in guiding genome-informed treatment decisions beyond single driver alterations.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Genômica , Resultado do Tratamento , Fenótipo , Mutação
9.
Med ; 5(4): 278-280, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38614071

RESUMO

Immunotherapy has enhanced breast cancer outcomes, but optimizing combination therapies is crucial. Integrating additional treatment modalities, like physical therapies, holds promise for optimizing efficacy. Pan et al. recently reported that combining preoperative immunotherapy with microwave ablation is safe and feasible in early-stage breast cancer, effectively sensitizing peripheral CD8+ T cells.1.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Micro-Ondas/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Terapia Combinada
10.
Cancer Cell Int ; 24(1): 131, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594722

RESUMO

Extensive exploration of the molecular subtypes of triple-negative breast cancer (TNBC) is critical for advancing precision medicine. Notably, the luminal androgen receptor (LAR) subtype has attracted attention for targeted treatment combining androgen receptor antagonists and CDK4/6 inhibitors. Unfortunately, this strategy has proven to be of limited efficacy, highlighting the need for further optimization. Using our center's comprehensive multiomics dataset (n = 465), we identified novel therapeutic targets and evaluated their efficacy through multiple models, including in vitro LAR cell lines, in vivo cell-derived allograft models and ex vivo patient-derived organoids. Moreover, we conducted flow cytometry and RNA-seq analysis to unveil potential mechanisms underlying the regulation of tumor progression by these therapeutic strategies. LAR breast cancer cells exhibited sensitivity to chidamide and enzalutamide individually, with a drug combination assay revealing their synergistic effect. Crucially, this synergistic effect was verified through in vivo allograft models and patient-derived organoids. Furthermore, transcriptomic analysis demonstrated that the combination therapeutic strategy could inhibit tumor progression by regulating metabolism and autophagy. This study confirmed that the combination of histone deacetylase (HDAC) inhibitors and androgen receptor (AR) antagonists possessed greater therapeutic efficacy than monotherapy in LAR TNBC. This finding significantly bolsters the theoretical basis for the clinical translation of this combination therapy and provides an innovative strategy for the targeted treatment of LAR TNBC.

11.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38602320

RESUMO

Breast cancer is a highly heterogeneous disease with varied subtypes, prognoses and therapeutic responsiveness. Human leukocyte antigen class I (HLA-I) shapes the immunity and thereby influences the outcome of breast cancer. However, the implications of HLA-I variations in breast cancer remain poorly understood. In this study, we established a multiomics cohort of 1156 Chinese breast cancer patients for HLA-I investigation. We calculated four important HLA-I indicators in each individual, including HLA-I expression level, somatic HLA-I loss of heterozygosity (LOH), HLA-I evolutionary divergence (HED) and peptide-binding promiscuity (Pr). Then, we evaluated their distribution and prognostic significance in breast cancer subtypes. We found that the four breast cancer subtypes had distinct features of HLA-I indicators. Increased expression of HLA-I and LOH were enriched in triple-negative breast cancer (TNBC), while Pr was relatively higher in hot tumors within TNBCs. In particular, a higher Pr indicated a better prognosis in TNBCs by regulating the infiltration of immune cells and the expression of immune molecules. Using the matched genomic and transcriptomic data, we found that mismatch repair deficiency-related mutational signature and pathways were enriched in low-Pr TNBCs, suggesting that targeting mismatch repair deficiency for synthetic lethality might be promising therapy for these patients. In conclusion, we presented an overview of HLA-I indicators in breast cancer and provided hints for precision treatment for low-Pr TNBCs.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Antígenos de Histocompatibilidade Classe I , Síndromes Neoplásicas Hereditárias , Neoplasias de Mama Triplo Negativas , Humanos , Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Mutação , Neoplasias de Mama Triplo Negativas/metabolismo
12.
Int J Biol Sci ; 20(6): 2130-2148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617541

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited effective therapeutic options readily available. We have previously demonstrated that lovastatin, an FDA-approved lipid-lowering drug, selectively inhibits the stemness properties of TNBC. However, the intracellular targets of lovastatin in TNBC remain largely unknown. Here, we unexpectedly uncovered ribosome biogenesis as the predominant pathway targeted by lovastatin in TNBC. Lovastatin induced the translocation of ribosome biogenesis-related proteins including nucleophosmin (NPM), nucleolar and coiled-body phosphoprotein 1 (NOLC1), and the ribosomal protein RPL3. Lovastatin also suppressed the transcript levels of rRNAs and increased the nuclear protein level and transcriptional activity of p53, a master mediator of nucleolar stress. A prognostic model generated from 10 ribosome biogenesis-related genes showed outstanding performance in predicting the survival of TNBC patients. Mitochondrial ribosomal protein S27 (MRPS27), the top-ranked risky model gene, was highly expressed and correlated with tumor stage and lymph node involvement in TNBC. Mechanistically, MRPS27 knockdown inhibited the stemness properties and the malignant phenotypes of TNBC. Overexpression of MRPS27 attenuated the stemness-inhibitory effect of lovastatin in TNBC cells. Our findings reveal that dysregulated ribosome biogenesis is a targetable vulnerability and targeting MRPS27 could be a novel therapeutic strategy for TNBC patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Proteínas Ribossômicas/genética , Proteínas Nucleares , Ribossomos/genética , Proteínas Mitocondriais
13.
Cancer Res ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657120

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. Interleukin-1 receptor type 2 (IL1R2) promotes breast tumor-initiating cell (BTIC) self-renewal and tumor growth in TNBC, indicating that targeting it could improve patient treatment. Here, we observed that IL1R2 blockade strongly attenuated macrophage recruitment and the polarization of tumor-associated macrophages (TAMs) to inhibit BTIC self-renewal and CD8+ T cell exhaustion, which resulted in reduced tumor burden and prolonged survival in TNBC mouse models. IL1R2 activation by TAM-derived IL1ß increased PD-L1 expression by interacting with the transcription factor yin yang 1 (YY1) and inducing YY1 ubiquitination and proteasomal degradation in both TAMs and TNBC cells. Loss of YY1 alleviated the transcriptional repression of c-Fos, which is a transcriptional activator of PD-L1. Combined treatment with an IL1R2-neutralizing antibody and anti-PD-1 led to enhanced anti-tumor efficacy and reduced TAMs, BTICs, and exhausted CD8+ T cells. These results suggest that IL1R2 blockade might be a strategy to potentiate immune checkpoint blockade efficacy in TNBC to improve patient outcomes.

14.
Protein Cell ; 15(6): 419-440, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38437016

RESUMO

Tumor-resident microbiota in breast cancer promotes cancer initiation and malignant progression. However, targeting microbiota to improve the effects of breast cancer therapy has not been investigated in detail. Here, we evaluated the microbiota composition of breast tumors and found that enterotoxigenic Bacteroides fragilis (ETBF) was highly enriched in the tumors of patients who did not respond to taxane-based neoadjuvant chemotherapy. ETBF, albeit at low biomass, secreted the toxic protein BFT-1 to promote breast cancer cell stemness and chemoresistance. Mechanistic studies showed that BFT-1 directly bound to NOD1 and stabilized NOD1 protein. NOD1 was highly expressed on ALDH+ breast cancer stem cells (BCSCs) and cooperated with GAK to phosphorylate NUMB and promote its lysosomal degradation, thereby activating the NOTCH1-HEY1 signaling pathway to increase BCSCs. NOD1 inhibition and ETBF clearance increase the chemosensitivity of breast cancer by impairing BCSCs.


Assuntos
Bacteroides fragilis , Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas , Proteína Adaptadora de Sinalização NOD1 , Humanos , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/microbiologia , Neoplasias da Mama/genética , Feminino , Bacteroides fragilis/metabolismo , Bacteroides fragilis/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Animais , Camundongos , Linhagem Celular Tumoral , Metaloendopeptidases
15.
Nat Commun ; 15(1): 2253, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480733

RESUMO

Ultrasound is an acoustic wave which can noninvasively penetrate the skull to deep brain regions, enabling neuromodulation. However, conventional ultrasound's spatial resolution is diffraction-limited and low-precision. Here, we report acoustic nanobubble-mediated ultrasound stimulation capable of localizing ultrasound's effects to only the desired brain region in male mice. By varying the delivery site of nanobubbles, ultrasound could activate specific regions of the mouse motor cortex, evoking EMG signaling and limb movement, and could also, separately, activate one of two nearby deep brain regions to elicit distinct behaviors (freezing or rotation). Sonicated neurons displayed reversible, low-latency calcium responses and increased c-Fos expression in the sub-millimeter-scale region with nanobubbles present. Ultrasound stimulation of the relevant region also modified depression-like behavior in a mouse model. We also provide evidence of a role for mechanosensitive ion channels. Altogether, our treatment scheme allows spatially-targetable, repeatable and temporally-precise activation of deep brain circuits for neuromodulation without needing genetic modification.


Assuntos
Encéfalo , Crânio , Masculino , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Ultrassonografia , Ondas Ultrassônicas , Movimento
16.
Signal Transduct Target Ther ; 9(1): 59, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462638

RESUMO

Diet, serving as a vital source of nutrients, exerts a profound influence on human health and disease progression. Recently, dietary interventions have emerged as promising adjunctive treatment strategies not only for cancer but also for neurodegenerative diseases, autoimmune diseases, cardiovascular diseases, and metabolic disorders. These interventions have demonstrated substantial potential in modulating metabolism, disease trajectory, and therapeutic responses. Metabolic reprogramming is a hallmark of malignant progression, and a deeper understanding of this phenomenon in tumors and its effects on immune regulation is a significant challenge that impedes cancer eradication. Dietary intake, as a key environmental factor, can influence tumor metabolism. Emerging evidence indicates that dietary interventions might affect the nutrient availability in tumors, thereby increasing the efficacy of cancer treatments. However, the intricate interplay between dietary interventions and the pathogenesis of cancer and other diseases is complex. Despite encouraging results, the mechanisms underlying diet-based therapeutic strategies remain largely unexplored, often resulting in underutilization in disease management. In this review, we aim to illuminate the potential effects of various dietary interventions, including calorie restriction, fasting-mimicking diet, ketogenic diet, protein restriction diet, high-salt diet, high-fat diet, and high-fiber diet, on cancer and the aforementioned diseases. We explore the multifaceted impacts of these dietary interventions, encompassing their immunomodulatory effects, other biological impacts, and underlying molecular mechanisms. This review offers valuable insights into the potential application of these dietary interventions as adjunctive therapies in disease management.


Assuntos
Dieta Cetogênica , Neoplasias , Humanos , Restrição Calórica , Dieta , Jejum , Neoplasias/terapia
17.
Nat Cancer ; 5(4): 673-690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38347143

RESUMO

Molecular profiling guides precision treatment of breast cancer; however, Asian patients are underrepresented in publicly available large-scale studies. We established a comprehensive multiomics cohort of 773 Chinese patients with breast cancer and systematically analyzed their genomic, transcriptomic, proteomic, metabolomic, radiomic and digital pathology characteristics. Here we show that compared to breast cancers in white individuals, Asian individuals had more targetable AKT1 mutations. Integrated analysis revealed a higher proportion of HER2-enriched subtype and correspondingly more frequent ERBB2 amplification and higher HER2 protein abundance in the Chinese HR+HER2+ cohort, stressing anti-HER2 therapy for these individuals. Furthermore, comprehensive metabolomic and proteomic analyses revealed ferroptosis as a potential therapeutic target for basal-like tumors. The integration of clinical, transcriptomic, metabolomic, radiomic and pathological features allowed for efficient stratification of patients into groups with varying recurrence risks. Our study provides a public resource and new insights into the biology and ancestry specificity of breast cancer in the Asian population, offering potential for further precision treatment approaches.


Assuntos
Povo Asiático , Neoplasias da Mama , Receptor ErbB-2 , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Feminino , Povo Asiático/genética , Receptor ErbB-2/genética , Mutação , Proteômica/métodos , Perfilação da Expressão Gênica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Pessoa de Meia-Idade , China/epidemiologia , Ferroptose/genética , Adulto , Metabolômica/métodos , Transcriptoma , Biomarcadores Tumorais/genética , População do Leste Asiático
18.
Chem Rev ; 124(5): 2081-2137, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38393351

RESUMO

Gallium-based liquid metal (LM) exhibits exceptional properties such as high conductivity and biocompatibility, rendering it highly valuable for the development of conformal bioelectronics. When combined with polymers, liquid metal-polymer conductors (MPC) offer a versatile platform for fabricating conformal cyborg devices, enabling functions such as sensing, restoration, and augmentation within the human body. This review focuses on the synthesis, fabrication, and application of MPC-based cyborg devices. The synthesis of functional materials based on LM and the fabrication techniques for MPC-based devices are elucidated. The review provides a comprehensive overview of MPC-based cyborg devices, encompassing their applications in sensing diverse signals, therapeutic interventions, and augmentation. The objective of this review is to serve as a valuable resource that bridges the gap between the fabrication of MPC-based conformal devices and their potential biomedical applications.


Assuntos
Polímeros , Dispositivos Eletrônicos Vestíveis , Humanos
19.
ACS Appl Mater Interfaces ; 16(7): 9362-9370, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324407

RESUMO

Wings of Morph aega butterflies are natural surfaces that exhibit anisotropic liquid wettability. The direction-dependent arrangement of the wing scales creates orientation-turnable microstructures with two distinct contact modes for liquid droplets. Enabled by recent developments in additive manufacturing, such natural surface designs coupled with hydrophobicity play a crucial role in applications such as self-cleaning, anti-icing, and fluidic manipulation. However, the interplay among resolution, architecture, and performance of bioinspired structures is barely achieved. Herein, inspired by the wing scales of the Morpho aega butterfly, full-scale synthetic surfaces with anisotropic wettability fabricated by two-photon polymerization are reported. The quality of the artificial butterfly scale is improved by optimizing the laser scanning strategy and the objective lens movement path. The corresponding contact angles of water on the fabricated architecture with various design parameters are measured, and the anisotropic fluidic wettability is investigated. Results demonstrate that tuning the geometrical parameters and spatial arrangement of the artificial wing scales enables anisotropic behaviors of the droplet's motion. The measured results also indicate a reverse phenomenon of the fabricated surfaces in contrast to their natural counterparts, possibly attributed to the significant difference in equilibrium wettability between the fabricated microstructures and the natural Morpho aega surface. These findings are utilized to design next-generation fluid-controllable interfaces for manipulating liquid mobility on synthetic surfaces.

20.
World J Pediatr ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38190010

RESUMO

BACKGROUND: Liver transplantation (LT) has been proposed as a viable treatment option for selected methylmalonic acidemia (MMA) patients. However, there are still controversies regarding the therapeutic value of LT for MMA. The systematic assessment of health-related quality of life (HRQoL)-targeted MMA children before and after LT is also undetermined. This study aimed to comprehensively assess the long-term impact of LT on MMA, including multiorgan sequelae and HRQoL in children and families. METHODS: We retrospectively evaluated 15 isolated MMA patients undergoing LT at our institution between June 2013 and March 2022. Pre- and post-transplant data were compared, including metabolic profiles, neurologic consequences, growth parameters, and HRQoL. To further assess the characteristics of the HRQoL outcomes in MMA, we compared the results with those of children with biliary atresia (BA). RESULTS: All patients had early onset MMA, and underwent LT at a mean age of 4.3 years. During 1.3-8.2 years of follow-up, the patient and graft survival rates were 100%. Metabolic stability was achieved in all patients with liberalized dietary protein intake. There was a significant overall improvement in height Z scores (P = 0.0047), and some preexisting neurological complications remained stable or even improved after LT. On the Pediatric Quality of Life Inventory (PedsQL™) generic core scales, the mean total, physical health, and psychosocial health scores improved significantly posttransplant (P < 0.05). In the family impact module, higher mean scores were noted for all subscales post-LT, especially family function and daily activities (P < 0.01). However, the total scores on the generic core scales and transplant module were significantly lower (Cohen's d = 0.57-1.17) when compared with BA recipients. In particular, social and school functioning (Cohen's d = 0.86-1.76), treatment anxiety, and communication (Cohen's d = 0.99-1.81) were far behind, with a large effect size. CONCLUSIONS: This large single-center study of the mainland of China showed an overall favorable impact of LT on isolated MMA in terms of long-term survival, metabolic control, and HRQoL in children and families. The potential for persistent neurocognitive impairment and inherent metabolic fragility requires long-term special care. Video Abstract (MP4 153780 KB).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...