Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 462: 140986, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208737

RESUMO

Harvest season exerts great influence on tea quality. Herein, the variations in non-volatile flavor substances in spring and summer fresh tea leaves of four varieties were comprehensively investigated by integrating UHPLC-Q-Exactive based lipidomics and metabolomics. A total of 327 lipids and 99 metabolites were detected, among which, 221 and 58 molecules were significantly differential. The molecular species of phospholipids, glycolipids and acylglycerolipids showed most prominent and structure-dependent seasonal changes, relating to polar head, unsaturation and total acyl length. Particularly, spring tea contained higher amount in aroma precursors of highly unsaturated glycolipids and phosphatidic acids. The contents of umami-enhancing amino acids and phenolic acids, e.g., theanine, theogallin and gallotannins, were increased in spring. Besides, catechins, theaflavins, theasinensins and flavone/flavonol glycosides showed diverse changes. These phytochemical differences covered key aroma precursors, tastants and colorants, and may confer superior flavor of black tea processed using spring leaves, which was verified by sensory evaluation.


Assuntos
Camellia sinensis , Aromatizantes , Lipidômica , Espectrometria de Massas , Metabolômica , Folhas de Planta , Estações do Ano , Camellia sinensis/química , Camellia sinensis/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Cromatografia Líquida de Alta Pressão , Aromatizantes/química , Aromatizantes/metabolismo , Humanos , Paladar , Odorantes/análise , Lipídeos/análise , Lipídeos/química
2.
Food Chem ; 463(Pt 4): 141482, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39388885

RESUMO

Spreading serves as a pivotal process in the flavor development of green tea. In this study, the effects of spreading under five light irradiation on the volatile and non-volatile metabolites of green tea were comprehensively investigated using intelligent sensory technologies integrated with targeted and non-targeted metabolomics analyses. The incorporation of yellow light irradiation into spreading process significantly improved the overall quality of green tea. A total of 71 volatile and 112 non-volatile metabolites were identified by GC-MS/MS and UHPLC-Q-Exactive/MS, respectively. Among them, 20 key odorants with OAVs exceeding 1 were screened out. Moreover, phenylethyl alcohol, ß-damascenone, ß-ionone, (E, Z)-2,6-nonadienal, linalool, and phenylacetaldehyde with higher OAVs were pivotal contributors to the aroma quality under different light irradiation. Additionally, 13 non-volatile metabolites with VIP > 1.2 were recognized as key differential metabolites under different light irradiation. The results provide technical support and theoretical guidance for enhancing the processing technology of green tea.

3.
Food Res Int ; 192: 114773, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147497

RESUMO

Withering is the first and key process that influences tea quality, with light quality being a key regulatory factor. However, effects of withering light quality (WLQ) on transformation and formation pathways of tea aroma and volatile metabolites (VMs) remain unclear. In the present study, four WLQs were set up to investigate their effects on tea aroma and VMs. The results showed that blue and red light reduced the grassy aroma and improved the floral and fruity aroma of tea. Based on GC-MS/MS, 83 VMs were detected. Through VIP, significant differences, and OAV analysis, 13 key differential VMs were screened to characterize the differential impacts of WLQ on tea aroma. Further analysis of the evolution and metabolic pathways revealed that glycoside metabolism was the key pathway regulating tea aroma through WLQ. Blue light withering significantly enhanced glycosides hydrolysis and amino acids deamination, which was beneficial for the enrichment of floral and fruity VMs, such as geraniol, citral, methyl salicylate, 2-methyl-butanal, and benzeneacetaldehyde, as well as the transformation of grassy VMs, such as octanal, naphthalene, and cis-3-hexenyl isovalerate, resulting in the formation of tea floral and fruity aroma. The results provide theoretical basis and technical support for the targeted processing of high-quality tea.


Assuntos
Camellia sinensis , Cromatografia Gasosa-Espectrometria de Massas , Luz , Metabolômica , Odorantes , Chá , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Metabolômica/métodos , Odorantes/análise , Chá/química , Camellia sinensis/química , Camellia sinensis/efeitos da radiação , Camellia sinensis/metabolismo , Glicosídeos/análise , Glicosídeos/metabolismo
4.
Food Chem ; 457: 140067, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38959681

RESUMO

Round green tea (RGT) presents unique properties and is widely distributed in China, and during processing, it undergoes dynamic changes in non-volatile metabolites (NVMs), which are poorly understood. Utilizing UHPLC-Q-Exactive/MS analysis, this study comprehensively characterized 216 NVMs during RGT processing and identified fixation and pan-frying as key processes influencing NVMs. Additionally, 23 key differential NVMs were screened, with amino acid and flavonoid metabolism highlighted as key metabolic pathways for RGT taste and color quality. The impact of pan-frying degree on shape, color, and taste was also explored. Moderate pan-frying led to optimal results, including a tight and round shape, green and bright color, mellow and umami taste, and reduced astringent and bitter taste NVMs, including epigallocatechin gallate, procyanidin B2, myricetin 3-O-galactoside, quinic acid, strictinin, phenylalanine, and theobromine. This study addresses the NVM research gap in RGT processing, thus providing a technical foundation for the precision-oriented processing of high-quality tea.


Assuntos
Camellia sinensis , Metabolômica , Paladar , Chá , Camellia sinensis/química , Camellia sinensis/metabolismo , Chá/química , Cromatografia Líquida de Alta Pressão , Humanos , Culinária , China , Flavonoides/metabolismo , Flavonoides/análise , Flavonoides/química
5.
Food Chem X ; 23: 101519, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38933990

RESUMO

In the present study, the comprehensive quality of Congou black tea (CBT) including aroma, taste, and liquid color was investigated by a combination of gas chromatography electronic nose (GC-E-Nose), electronic tongue (E-tongue), and electronic eye (E-eye). An excellent discrimination of different quality grades of CBT was accomplished through the fusion of GC-E-Nose, E-tongue, and E-eye combined with orthogonal partial least squares discriminant analysis, with parameters of R2Y = 0.803 and Q2 = 0.740. Moreover, the quantitative evaluation of CBT quality was successfully achieved by partial least squares regression analysis, with the absolute error within 1.39 point, and the relative error within 1.62%. Additionally, 12 key variables were screened out by stepwise multiple linear regression analysis, which significantly contributed to the comprehensive quality score of CBT. Our results suggest that the fusion of multiple intelligent sensory technologies offers great potential and practicability in the quality evaluation of black tea.

6.
Food Chem ; 458: 140226, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38943961

RESUMO

Shaking constitutes a pivotal technique for enhancing black tea quality; nevertheless, its impact on the transformation mechanism of non-volatile metabolites (NVMs) in black tea remains obscure. The present study aimed to investigate the impact of shaking-withering methods (SWM) and traditional-withering methods (TWM) on black tea quality and NVMs conversion. A total of 57 NVMs and 14 objective quantitative indicators were obtained. SWM enhanced sweetness and umami taste, as well as appearance and liquor color brightness of black tea. Eight key differential NVMs were identified by multivariate statistical and dose over threshold value analysis. Metabolic pathway and evolution law analysis revealed that SWM enhanced the oxidation of catechins and flavonol glycosides, promoted the decarboxylation of glutamic acid, then facilitated the formation of theaflavin-3,3'-digallate, finally enhanced the taste and color quality of black tea. This study offers theoretical guidance and technical support for the targeted processing of high-quality black tea.


Assuntos
Camellia sinensis , Metabolômica , Paladar , Chá , Chá/química , Camellia sinensis/química , Camellia sinensis/metabolismo , Aromatizantes/química , Aromatizantes/metabolismo , Humanos , Manipulação de Alimentos , Catequina/metabolismo , Catequina/química , Catequina/análise , Controle de Qualidade
7.
Food Chem X ; 22: 101432, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38764783

RESUMO

Aroma plays a pivotal role in the quality of black tea. However, the acceptability of black tea is greatly limited by the green off-flavor (GOF) resulting from the inappropriate processing control. In this study, the key odorants causing GOF were investigated by volatolomics, and their dynamic changes and formation pathways were in-depth understood. Significant alterations in volatile metabolites were observed in the withering stage. A total of 14 key odorants were identified as contributors to GOF, including 2-methylpropanal, 3-methylbutanal, 1-hexanol, nonanal, (E, E)-2,4-heptadienal, benzaldehyde, linalool, (E, E)-3,5-octadiene-2-one, ß-cyclocitral, phenylacetaldehyde, (E, E)-2,4-nonadienal, methyl salicylate, geraniol, and ß-ionone. Among them, (E, E)-2,4-heptadienal (OAV = 3913), characterized by fatty, green, and oily aromas, was considered to be the most important contributor causing GOF. Moreover, it was found that lipid degradation served as the primary metabolic pathway for GOF. This study provides a theoretical foundation for off-flavor control and quality improvement of black tea.

8.
Food Res Int ; 187: 114330, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763633

RESUMO

Processing technology plays a crucial role in the formation of tea aroma. The dynamic variations in volatile metabolites across different processing stages of fresh scent green tea (FSGT) were meticulously tracked utilizing advanced analytical techniques such as GC-E-Nose, GC-MS, and GC × GC-TOFMS. A total of 244 volatile metabolites were identified by GC-MS and GC × GC-TOFMS, among which 37 volatile compounds were concurrently detected by both methods. Spreading and fixation stages were deemed as pivotal processes for shaping the volatile profiles in FSGT. Notably, linalool, heptanal, 2-pentylfuran, nonanal, ß-myrcene, hexanal, 2-heptanone, pentanal, 1-octen-3-ol, and 1-octanol were highlighted as primary contributors to the aroma profiles of FSGT by combining odor activity value assessment. Furthermore, lipid degradation and glycoside hydrolysis were the main pathways for aroma formation of FSGT. The results not only elucidate the intricate variations in volatile metabolites but also offer valuable insights into enhancing the processing techniques for improved aroma quality of green tea.


Assuntos
Manipulação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Chá , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Chá/química , Manipulação de Alimentos/métodos , Nariz Eletrônico , Aldeídos/análise , Aldeídos/metabolismo , Monoterpenos Acíclicos/metabolismo , Monoterpenos Acíclicos/análise , Camellia sinensis/química , Camellia sinensis/metabolismo , Cetonas/análise , Cetonas/metabolismo , Octanóis
9.
Food Chem ; 453: 139628, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38761731

RESUMO

Umami taste is a key criteria of green tea quality evaluation. The aim of this study was to comprehensively explore the key umami taste contributors in Longjing tea. The taste and molecular profiles of 36 Longjing green tea infusions were characterized by sensory quantitative descriptive analysis and LC-MS based metabolomics, respectively. By uni-/multi-variate statistical analysis, 84 differential compounds were screened among tea infusions with varied umami perceptions. Among them, 17 substances were identified as candidate umami-enhancing compounds, which showed significant positive correlations with umami intensities. Their natural concentrations were accurately quantified, and their umami taste-modifying effects were further investigated by taste addition into glutamic acid solution. Glutamic acid, aspartic acid, glutamine, theanine, phenylalanine, histidine, theogallin, galloylglucose, 1,2,6-trigalloylglucose significantly enhanced the umami taste. This study uncovered for the first time of some bitter amino acids and galloylglucose homologous series as important umami-enhancers, which provided a novel perspective into the tea taste.


Assuntos
Camellia sinensis , Metabolômica , Paladar , Chá , Chá/química , Humanos , Camellia sinensis/química , Camellia sinensis/metabolismo , Aromatizantes/química , Aromatizantes/metabolismo , Masculino , Adulto , Espectrometria de Massas , Feminino , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/análise , Cromatografia Líquida de Alta Pressão
10.
Prev Med ; 184: 107997, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729527

RESUMO

OBJECTIVES: Public Health officials are often challenged to effectively allocate limited resources. Social determinants of health (SDOH) may cluster in areas to cause unique profiles related to various adverse life events. The authors use the framework of unintended teen pregnancies to illustrate how to identify the most vulnerable neighborhoods. METHODS: This study used data from the U.S. American Community Survey, Princeton Eviction Lab, and Connecticut Office of Vital Records. Census tracts are small statistical subdivisions of a county. Latent class analysis (LCA) was employed to separate the 832 Connecticut census tracts into four distinct latent classes based on SDOH, and GIS mapping was utilized to visualize the distribution of the most vulnerable neighborhoods. GEE Poisson regression model was used to assess whether latent classes were related to the outcome. Data were analyzed in May 2021. RESULTS: LCA's results showed that class 1 (non-minority non-disadvantaged tracts) had the least diversity and lowest poverty of the four classes. Compared to class 1, class 2 (minority non-disadvantaged tracts) had more households with no health insurance and with single parents; and class 3 (non-minority disadvantaged tracts) had more households with no vehicle available, that had moved from another place in the past year, were low income, and living in renter-occupied housing. Class 4 (minority disadvantaged tracts) had the lowest socioeconomic characteristics. CONCLUSIONS: LCA can identify unique profiles for neighborhoods vulnerable to adverse events, setting up the potential for differential intervention strategies for communities with varying risk profiles. Our approach may be generalizable to other areas or other programs. KEY MESSAGES: What is already known on this topic Public health practitioners struggle to develop interventions that are universally effective. The teen birth rates vary tremendously by race and ethnicity. Unplanned teen pregnancy rates are related to multiple social determinants and behaviors. Latent class analysis has been applied successfully to address public health problems. What this study adds While it is the pregnancy that is not planned rather than the birth, access to pregnancy intention data is not available resulting in a dependency on teen birth data for developing public health strategies. Using teen birth rates to identify at-risk neighborhoods will not directly represent the teens at risk for pregnancy but rather those who delivered a live birth. Since teen birth rates often fluctuate due to small numbers, especially for small neighborhoods, LCA may avoid some of the limitations associated with direct rate comparisons. The authors illustrate how practitioners can use publicly available SDOH from the Census Bureau to identify distinct SDOH profiles for teen births at the census tract level. How this study might affect research, practice or policy These profiles of classes that are at heightened risk potentially can be used to tailor intervention plans for reducing unintended teen pregnancy. The approach may be adapted to other programs and other states to prioritize the allocation of limited resources.


Assuntos
Sistemas de Informação Geográfica , Análise de Classes Latentes , Determinantes Sociais da Saúde , Humanos , Feminino , Adolescente , Gravidez , Connecticut , Características da Vizinhança , Populações Vulneráveis/estatística & dados numéricos , Características de Residência/estatística & dados numéricos , Gravidez na Adolescência/estatística & dados numéricos , Estados Unidos , Fatores Socioeconômicos
11.
Foods ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38472841

RESUMO

Aroma is an indispensable factor that substantially impacts the quality assessment of black tea. This study aims to uncover the dynamic alterations in the sweet and floral aroma black tea (SFABT) throughout various manufacturing stages using a comprehensive analytical approach integrating gas chromatography electronic nose, gas chromatography-ion mobility spectrometry (GC-IMS), and gas chromatography-mass spectrometry (GC-MS). Notable alterations in volatile components were discerned during processing, predominantly during the rolling stage. A total of 59 typical volatile compounds were identified through GC-IMS, whereas 106 volatile components were recognized via GC-MS throughout the entire manufacturing process. Among them, 14 volatile compounds, such as linalool, ß-ionone, dimethyl sulfide, and 1-octen-3-ol, stood out as characteristic components responsible for SFABT with relative odor activity values exceeding one. This study serves as an invaluable theoretical platform for strategic controllable processing of superior-quality black tea.

12.
Food Res Int ; 178: 113876, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309897

RESUMO

The species and contents of ɑ-dicarbonyls in commercial black tea were examined, along with the effects of the manufacturing process and drying temperature on the formation of ɑ-dicarbonyls. Ten ɑ-dicarbonyls were quantified in commercial and in-process black tea samples by using UPLC-MS/MS and their derived quinoxalines. The ɑ-dicarbonyls content in commercial black tea decreased significantly (p < 0.05) in the following order: 3-deoxyglucosone > glucosone > 3-deoxypentosone = threosone > galactosone ≥ methylglyoxal = glyoxal ≥ 3-deoxygalactosone = 3-deoxythreosone = diacetyl. Except for 3-deoxyglucosone and 3-deoxygalactosone, a further eight ɑ-dicarbonyls were identified in all manufacturing steps of black tea. Except for the drying step, the rolling and fermenting played important roles in the formation of ɑ-dicarbonyls. The total contents of ɑ-dicarbonyls in black tea infusion ranged from 16.48 to 75.32 µg/g based on our detected ten ɑ-dicarbonyls.


Assuntos
Camellia sinensis , Chá , Reação de Maillard , Cromatografia Líquida , Espectrometria de Massas em Tandem , Glioxal/análise
13.
Food Chem ; 439: 138154, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071844

RESUMO

Drying temperature (DT) considerably affects the flavor of black tea (BT); however, its influence on non-volatile metabolites (NVMs) and their correlations remain unclear. In this study, an objective quantification technique and widely targeted metabolomics were applied to explore the effects of DT (130 °C, 110 °C, 90 °C, and 70 °C) on BT flavor and NVMs conversion. BT with a DT of 90 °C presented the highest umami, sweetness, overall taste, and brightness color values. Using the weighted gene co-expression network and multiple factor analysis, 455 sensory trait-related NVMs were explored across six key modules. Moreover, 169 differential NVMs were screened, and flavonoids, phenolic acids, amino acids, organic acids, and lipids were identified as key differential NVMs affecting the taste and color attributes of BT in response to DT. These findings enrich the BT processing theory and offer technical support for the precise and targeted processing of high-quality BT.


Assuntos
Camellia sinensis , Chá , Chá/química , Temperatura , Camellia sinensis/química , Flavonoides/análise , Metabolômica/métodos
14.
Food Chem X ; 20: 100989, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144743

RESUMO

Rolling represents an essential stage in congou black tea processing. However, the influence of rolling pressure on tea flavor and non-volatile compounds remains unclear. Herein, a combination of untargeted metabolomics, tea pigments quantification, E-tongue, colorimeter and sensory evaluation was used to evaluate the effect of rolling pressure on black tea quality. As the rolling pressure increased, theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs) significantly elevated. The tea metabolic profiles fluctuated and 47 metabolites were identified as key differential metabolites including flavan-3-ols, flavonol/flavone glycosides, phenolic acids, amino acids. These substances altered possibly due to the variations in enzymatic oxidation of tea phenolics and amino acids. Overall, black tea with moderate rolling pressure presented higher sweetness, lower bitterness, and higher quality index (10 TFs + TRs)/TBs. The results were verified by a validation batch. This study provided new insights into the regulation of rolling pressure and a guidance for black tea processing.

15.
Food Chem X ; 20: 101007, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144830

RESUMO

Shaking is an innovative technology employed in black tea processing to enhance flavor. However, the effects of shaking on the evolutionary mechanisms of volatile metabolites (VMs) remain unclear. In this study, we compared the effects of a shaking-withering method with those of traditional withering on the flavor and VMs transformation of black tea. The results showed that black tea treated with shaking exhibited excellent quality with floral and fruity aroma. Based on gas chromatography-tandem mass spectrometry, 128 VMs (eight categories) were detected. Combining variable importance projection with odor activity value analysis, eight key differential VMs were identified. Shaking could promote the oxidative degradation of fatty acids and carotenoids and modulate the biosynthesis of terpenoids to facilitate the formation of floral/fruity VMs (such as (Z)-hexanoic acid-3-hexenyl ester, ethyl hexanoate, trans-ß-ionone, and decanal). Our findings provide theoretical guidance for the production of high-quality black tea with floral and fruity aromas.

16.
Food Chem X ; 19: 100844, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37780241

RESUMO

Despite the importance of fixation in determining green tea quality, its role in reducing the bitter and astringent taste of this beverage remains largely unknown. Herein, an electromagnetic roller-hot-air-steam triple-coupled fixation (ERHSF) device was developed, and its operating parameters were optimized (steam volume: 20 kg/h; hot-air temperature: 90 °C; hot-air blower speed: 1200 r/min). Compared with conventional fixation treated samples, the ratio of tea polyphenols to free amino acids and ester-catechins to simple-catechins in ERHSF-treated samples was reduced by 11.0% and 3.2%, reducing bitterness and astringency of green tea; amino acids, soluble sugars, and chlorophyll contents were significantly increased, enhancing the freshness, sweetness, and greenness; the color indexes, such as L/L* value of brightness and -a/-a* value of greenness, were also improved, and ERHSF-treated samples had the highest sensory scores. These results provided theoretical support and technical guidance for precise quality improvement of summer-autumn green tea.

17.
Food Chem ; 427: 136641, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37393635

RESUMO

To characterize the key odorants of floral aroma green tea (FAGT) and reveal its dynamic evolution during processing, the volatile metabolites in FAGT during the whole processing were analyzed by integrated volatolomics techniques, relative odor activity value (rOAV), aroma recombination, and multivariate statistical analysis. The volatile profiles undergone significant changes during processing, especially in the withering and fixation stages. A total of 184 volatile compounds were identified (∼53.26% by GC-MS). Among them, 7 volatiles with rOAV > 1 were identified as characteristic odorants of FAGT, and most of these compounds reached the highest in withering stage. According to the formation pathways, these key odorants could be divided into four categories: fatty acid-derived volatiles, glycoside-derived volatiles, amino acid-derived volatiles, and carotenoid-derived volatiles. Our study provides a comprehensive strategy to elucidate changes in volatile profiles during processing and lays a theoretical foundation for the targeted processing of high-quality green tea.


Assuntos
Chá , Compostos Orgânicos Voláteis , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Nariz Eletrônico , Compostos Orgânicos Voláteis/análise
18.
Food Chem X ; 18: 100693, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37397226

RESUMO

Storage time is one of the important factors affecting the aroma quality of Pu-erh tea. In this study, the dynamic changes of volatile profiles of Pu-erh teas stored for different years were investigated by combining gas chromatography electronic nose (GC-E-Nose), gas chromatography-mass spectrometry (GC-MS), and gas chromatography-ion mobility spectrometry (GC-IMS). GC-E-Nose combined with partial least squares-discriminant analysis (PLS-DA) realized the rapid discrimination of Pu-erh tea with different storage time (R2Y = 0.992, Q2 = 0.968). There were 43 and 91 volatile compounds identified by GC-MS and GC-IMS, respectively. A satisfactory discrimination (R2Y = 0.991, and Q2 = 0.966) was achieved by using PLS-DA based on the volatile fingerprints of GC-IMS. Moreover, according to the multivariate analysis of VIP > 1.2 and univariate analysis of p < 0.05, 9 volatile components such as linalool and (E)-2-hexenal were selected as key variables to distinguish Pu-erh teas with different storage years. The results provide theoretical support for the quality control of Pu-erh tea.

19.
Heliyon ; 9(6): e17305, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37426805

RESUMO

In this study, four kinds of Longjing tea, the famous flat green tea and the protected geographical indication product in China, were used to explore the quality difference of the same green tea due to the cultivar, geographic origin, and storage time under the premise of consistent picking conditions and processing technology using the widely targeted metabolomics. Results showed that 483 flavonoid metabolites with 10 subgroups of flavonoids were screened and 118 differential flavonoid metabolites were identified. The number and subgroups of differential flavonoid metabolites produced by different cultivars of Longjing tea were the largest, followed by storage time, and third by the geographic origin. Glycosidification and methylation or methoxylation were the main structural modifications of differential flavonoid metabolites. This study has enriched the understanding of the effects of the cultivar, the geographic origin, and the storage time on the flavonoid metabolic profiles of Longjing tea, and provided worthy information for the traceability of green tea.

20.
Front Nutr ; 10: 1029745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937343

RESUMO

Chayote (Sechium edulel) fruits are rich in flavonoids, folate, and low-calorie food. However, studies about the flavonoids and the corresponding regulatory mechanism of flavonoid synthesis in chayote fruits was still unclear. In present study, an integrated transcriptome and metabolite analysis of chayote fruits at three different storage stages were conducted to explore the flavonoid compositions and gene expression associated with flavonoid synthesis. Through the UPLC-MS/MS analysis, a total of 57 flavonoid compounds were detected. Of these, 42 flavonoid glycosides were significantly differential accumulation in chayote fruits at three different storage stages. Many genes associated with flavonoid synthesis were differentially expressed in chayote fruits at three different storage stages through RNA-seq analysis, including structural genes and some TFs. There was a high correlation between RNA-seq analysis and metabolite profiling, and the expression level of candidate genes in the flavonoid synthesis pathway were consistent with the dynamic changes of flavonoids. In addition, one R2R3-MYB transcription factor, FSG0057100, was defined as the critical regulatory gene of flavonoid synthesis. Furthermore, exogenous application of phenylalanine increased the total content of flavonoids and promoted some flavonoid biosynthesis-related gene expression in chayote fruits. The above results not only make us better understand the molecular mechanism of flavonoid synthesis in chayote fruits, but also contribute to the promotion and application of chayote products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...