Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 30(2): 48, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267788

RESUMO

CONTEXT: The incorporation of functionalized carbon nanotubes can enhance the mechanical properties of cement-based materials. However, the types of functional groups and their roles in composite materials are not yet clear. In this study, molecular dynamics (MD) simulation methods were employed to investigate the mechanical performance of hybridized calcium silicate hydrate gel reinforced with pure carbon nanotubes, epoxy-coated carbon nanotubes, carboxylated carbon nanotubes, and hydroxylated carbon nanotubes. The results indicate that the addition of all four types of nanotubes can enhance the mechanical properties of hydrated calcium silicate gel compared to pure C-S-H. Tensile loading results show that carbon nanotubes can act as bridges for microcracks in the composite material, and functionalized nanotubes exhibit a better reinforcing effect than pure carbon nanotubes. Under tensile stress, hydroxylated nanotubes are more effective in increasing the toughness of the composite material, while carboxylated nanotubes tend to enhance the strength of the composite material. The compressive loading results indicate that the compressive strength of cement-based materials is higher than their tensile strength. Overall, carboxylated nanotubes show particularly remarkable performance in enhancing the mechanical properties of cement-based materials. Compared to pure C-S-H gel, the tensile and compressive elastic moduli of carboxylated nanotube/C-S-H composite material increased by 18.13% and 34.78%, respectively. Its tensile and compressive strengths also increased by 30.40% and 40.23%, respectively. METHOD: All molecular dynamics simulations were performed on the classical computational simulation platform LAMMPS. In this paper, the parameters in the ClayFF force field are chosen to simulate calcium hydrated silicate (/C-S-H), and the ClayFF-CVFF combined force field is used to simulate the mechanical properties of the CNT/C-S-H molecular model structure.

2.
J Mol Model ; 30(1): 2, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060064

RESUMO

CONTEXT: The quasi-metallic properties of stanene limit its prospects in optoelectronic devices. Based on first-principles calculations, a systematic study is conducted on the tuning effects of surface hydrogenation and Al atom doping on the electronic and optical properties of stanene. Surface hydrogenation serves as an ideal way to open the forbidden band of stanene, and Al atom doping further increases hydrogenated stanene (stanane) band gap to 0.460 eV. Deformation has a minor impact on the stability of the stanane-Al structure, while shear strain can effectively modulate the band gap engineering of the doped system, reducing the band gap value from 0.460 to 0.170 eV. Deformation induces a redshift in the absorption peak and reflectance, also slowing down the rate of decrease in the absorption coefficient, and enhancing the peak value of light reflectance, which is positively correlated with the degree of shear strain. These findings hold promise for expanding the potential application of monolayer stanane in semiconductor devices. METHODS: All calculations are performed using CASTEP module in Materials Studio based on the density functional theory (DFT). The Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) is employed to describe the exchange-correlation energy (Perdew et al., Phys Rev Lett 77(18), 1996). We construct models for both stanene and stanane. The original unit cell of stanene has two Sn atoms, while stanane consists of two Sn atoms and two H atoms, and expand them to a 3 × 3 × 1 supercell with a vacuum layer of 20 Å in height to prevent interlayer coupling. After convergence testing, the plane-wave cutoff energy is set to 450 eV, and the energy convergence threshold is set to 1 × 10-5 eV. The maximum residual stress for each atom is set to 0.01 eV/Å. Brillouin zone sampling is performed using a 6 × 6 × 1 k-point mesh based on the Monkhorst-Pack method (Monkhorst and Pack, Phys Rev B 13(12), 1976). The k-point accuracy of the density of states and optical properties is 9 × 9 × 1. All calculations are performed using the more advanced OTFG ultrasoft pseudopotential, and structural relaxations are performed using supercells to ensure that the model is fully relaxed. We use the HSE06 functional to calculate the energy band structures of stanane-Al deformed to 0%, 4%, and 8%, resulting in band gap values of 1.465 eV, 1.368 eV, and 1.016 eV, respectively. These values are significantly higher than those obtained using the PBE functional (0.460 eV, 0.397 eV, and 0.170 eV). However, the shapes and trends of the band structures obtained from both PBE and HSE06 calculations are similar. Additionally, the calculation time needed by HSE06 is greatly longer than PBE, which exceeds the capabilities of our computer hardware, and cannot support all subsequent calculations. To investigate the influence of deformations on the variation of band gap values and to conserve computational resources, the subsequent calculations in this study use the PBE functional.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...