Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
Micromachines (Basel) ; 15(9)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39337757

RESUMO

Chip-scale devices harnessing the interaction between hot atomic ensembles and light are pushing the boundaries of precision measurement techniques into unprecedented territory. These advancements enable the realization of super-sensitive, miniaturized sensing instruments for measuring various physical parameters. The evolution of this field is propelled by a suite of sophisticated components, including miniaturized single-mode lasers, microfabricated alkali atom vapor cells, compact coil systems, scaled-down heating systems, and the application of cutting-edge micro-electro-mechanical system (MEMS) technologies. This review delves into the essential technologies needed to develop chip-scale hot atomic devices for quantum metrology, providing a comparative analysis of each technology's features. Concluding with a forward-looking perspective, this review discusses the future potential of chip-scale hot atomic devices and the critical technologies that will drive their advancement.

2.
Ann Surg Open ; 5(3): e486, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39310355

RESUMO

Objective: To assess overall survival (OS), compare the effects of neoadjuvant treatment, and describe surgical outcomes for patients undergoing pancreatic resection following chemotherapy and/or chemoradiotherapy (CRT) for borderline resectable (BR) or locally advanced (LA) pancreatic ductal adenocarcinoma (PDAC). Background: We approach BR/LA PDAC using chemotherapy followed by selective CRT to the primary site of disease where either the surgical margin remains radiologically threatened following chemotherapy or as a further downstaging treatment. Methods: Retrospective study of patients between December 2005 and June 2023 at the Royal Marsden Hospital, London, United Kingdom. Results: A total of 54 patients were included. The OS between R1 and R0 patients was significantly different: 7.5 versus 23 versus 42 versus 51 months for R1 chemo, R1 chemo and CRT, R0 chemo and R0 chemo, and CRT groups, respectively, P < 0.001. Similarly, 9 versus 18 versus 42 versus 41 months for N1 chemo, N1 chemo and CRT, N0 chemo and N0 chemo, and CRT groups, respectively, P = 0.0026. Multivariable Cox regression model demonstrated that perineural invasion (hazard ratio: 2.88, 95% confidence interval: 1.06-7.81; P = 0.038) and perivascular invasion (PVI) (HR: 2.76, 95% CI: 1.24-6.13; P = 0.013) were associated with significantly worse OS. Chemo and CRT conferred OS benefit compared to chemo only (7 vs 23 months, P = 0.004) in PVI-positive patients. Conclusions: Neoadjuvant chemotherapy followed by CRT compared to chemotherapy alone for resected BD and LA PDAC was demonstrated to significantly improve median OS, in particular, in patients with R1 resection margins, ypN1 nodal status, and perivascular invasion.

3.
Sci Total Environ ; 954: 176485, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39341243

RESUMO

Since silver nanoparticles (AgNPs) and polystyrene microplastics (PS-MP) share common environmental niches, their interactions can modulate their hazard impacts. Herein, we assessed the developmental toxicity of 1 mg/L PS-MP, 0.5 mg/L AgNPs and the mixtures of AgNPs and PS-MP on embryo-larval zebrafish. We found that AgNPs co-exposure with PS-MP remarkably decreased mortality rates, malformation rates, heart rates and yolk sac area, while it increased hatching rates and eye size compared to the AgNPs group. These phenomena revealed that the cell cycle, oxidative stress, apoptosis, lipid metabolism, ferroptosis and p53 signalling pathway were obviously affected by single AgNPs exposure at 96 hpf (hours post fertilization). Interestingly, all these effects were effectively ameliorated by co-exposure with PS-MP. The combination of transcriptomic and metabolomic analyses showed that the imbalance of DEGs (differentially expressed genes) and DEMs (differentially expressed metabolites) (PI, phosphatidylinositol and TAG-FA, triacylglycerol-fatty acid) disturbed both the cell cycle and lipid metabolism following single AgNPs exposure and co-exposure with PS-MP. These findings suggest that PS-MP attenuates the developmental toxicity of AgNPs on embryo-larval zebrafish. Overall, this study provides important insight into understanding the transcriptional responses and mechanisms of AgNPs alone or in combination with PS-MPs on embryo-larval zebrafish, providing a reference for ecological risk assessment of combined exposure to PS-MP and metal nanoparticles.

4.
Angew Chem Int Ed Engl ; : e202414506, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39214860

RESUMO

The electrochemical reduction of CO2 to high-value carbon-based chemicals provides a sustainable approach to achieving an artificial carbon cycle. In the decade, metal-organic frameworks (MOFs), a kind of porous crystalline porous materials featuring well-defined structures, large surface area, high porosity, diverse components, easy tailorability, and controllable morphology, have attracted considerable research attention, serving as electrocatalysts to drive CO2 reduction. In this review, the reaction mechanisms of electrochemical CO2 reduction and the structure/component advantages of MOFs meeting the requirements of electrocatalysts for CO2 reduction are analyzed. After that, the representative progress for the precise fabrication of MOF-based electrocatalysts for CO2 reduction, focusing on catalytic site design and microenvironment modulation, are systemically summarized. Furthermore, the emerging applications and promising research for more practical scenarios related to electrochemical CO2 conversion are specifically proposed. Finally, the remaining challenges and future outlook of MOFs for electrochemical CO2 reduction are further discussed.

5.
Front Public Health ; 12: 1406120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39171303

RESUMO

Background: With the spread and spread of COVID-19 around the world, youth's learning, lifestyle and health have been greatly affected. Based on the current research, there is no adequate analysis of the development of young people's physique and heart and lung health during COVID-19, and there is a lack of relevant targeted research. The aim of this study was to investigate the changes of BMI and Maximum Oxygen Absorption (VO2max) in 12-14 year old teenagers before and after COVID-19. Method: The BMI, 1,000/800 m running time and associated data related to 29,813 individuals between 2019 and 2022 were collected by cluster sampling, and the changes of BMI Z and VO2max before and after the outbreak were analyzed. Moreover, the relationship between BMI and cardiovascular endurance was analyzed by means of multi-linear stepwise regression. Results: The covariance analysis models indicated that compared with 2019, adolescent weight, BMI, and 1,000/800 m running time showed varying degrees of growth in 2020, while lung capacity decreased. All indicators achieved rapid rebound in 2021 and 2022 (p < 0.01); the one-way analysis of variance models indicated that The BMI Z score and VO2max of adolescents showed growth and decline in 2020, respectively, and achieved rapid recovery and development in 2021 and 2022 (p < 0.01). The results of the multiple linear stepwise regression analysis indicate that, after the years of BMI Z and novel coronavirus infection were included (△R2 = 0.179), adolescents' overweight and obesity were positively correlated with the maximum oxygen uptake (B = 0.643, 95%CI = 0.634 ~ 0.652); There is a negative correlation between weight loss and maximum oxygen uptake (B = -0.510, 95%CI = -0.537~-0.484); The year of novel coronavirus infection was positively correlated with the maximum oxygen uptake of adolescents (B = 0.116, 95%CI = 0.107~0.125). Conclusion: This study shows that the impact of COVID-19 on BMI and heart and lung health in adolescents is significant. Young people of all ages and sexes showed similar developmental trends.


Assuntos
Índice de Massa Corporal , COVID-19 , Humanos , COVID-19/epidemiologia , Adolescente , Masculino , Feminino , China/epidemiologia , Estudos Longitudinais , Seguimentos , Criança , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , SARS-CoV-2 , Aptidão Cardiorrespiratória/fisiologia , Pandemias , População do Leste Asiático
6.
Front Cell Infect Microbiol ; 14: 1397717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39157177

RESUMO

Objective: This retrospective cohort study aimed to investigate the composition and diversity of lung microbiota in patients with severe pneumonia and explore its association with short-term prognosis. Methods: A total of 301 patients diagnosed with severe pneumonia underwent bronchoalveolar lavage fluid metagenomic next-generation sequencing (mNGS) testing from February 2022 to January 2024. After applying exclusion criteria, 236 patients were included in the study. Baseline demographic and clinical characteristics were compared between survival and non-survival groups. Microbial composition and diversity were analyzed using alpha and beta diversity metrics. Additionally, LEfSe analysis and machine learning methods were employed to identify key pathogenic microorganism associated with short-term mortality. Microbial interaction modes were assessed through network co-occurrence analysis. Results: The overall 28-day mortality rate was 37.7% in severe pneumonia. Non-survival patients had a higher prevalence of hypertension and exhibited higher APACHE II and SOFA scores, higher procalcitonin (PCT), and shorter hospitalization duration. Microbial α and ß diversity analysis showed no significant differences between the two groups. However, distinct species diversity patterns were observed, with the non-survival group showing a higher abundance of Acinetobacter baumannii, Klebsiella pneumoniae, and Enterococcus faecium, while the survival group had a higher prevalence of Corynebacterium striatum and Enterobacter. LEfSe analysis identified 29 distinct terms, with 10 potential markers in the non-survival group, including Pseudomonas sp. and Enterococcus durans. Machine learning models selected 16 key pathogenic bacteria, such as Klebsiella pneumoniae, significantly contributing to predicting short-term mortality. Network co-occurrence analysis revealed greater complexity in the non-survival group compared to the survival group, with differences in central genera. Conclusion: Our study highlights the potential significance of lung microbiota composition in predicting short-term prognosis in severe pneumonia patients. Differences in microbial diversity and composition, along with distinct microbial interaction modes, may contribute to variations in short-term outcomes. Further research is warranted to elucidate the clinical implications and underlying mechanisms of these findings.


Assuntos
Líquido da Lavagem Broncoalveolar , Microbiota , Humanos , Masculino , Feminino , Prognóstico , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Líquido da Lavagem Broncoalveolar/microbiologia , Pneumonia/microbiologia , Pneumonia/mortalidade , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Pulmão/microbiologia , Pulmão/patologia , Metagenômica , Aprendizado de Máquina
7.
J Exp Clin Cancer Res ; 43(1): 189, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978141

RESUMO

BACKGROUND: Distinguishing benign from malignant pancreaticobiliary disease is challenging because of the absence of reliable biomarkers. Circulating extracellular vesicles (EVs) have emerged as functional mediators between cells. Their cargos, including microRNAs (miRNAs), are increasingly acknowledged as an important source of potential biomarkers. This multicentric, prospective study aimed to establish a diagnostic plasma EV-derived miRNA signature to discriminate pancreatic ductal adenocarcinoma (PDAC) from benign pancreaticobiliary disease. METHODS: Plasma EVs were isolated using size exclusion chromatography (SEC) and characterised using nanoparticle tracking analysis, electron microscopy and Western blotting. EV-RNAs underwent small RNA sequencing to discover differentially expressed markers for PDAC (n = 10 benign vs. 10 PDAC). Candidate EV-miRNAs were then validated in a cohort of 61 patients (n = 31 benign vs. 30 PDAC) by RT-qPCR. Logistic regression and optimal thresholds (Youden Index) were used to develop an EV-miR-200 family model to detect cancer. This model was tested in an independent cohort of 95 patients (n = 30 benign, 33 PDAC, and 32 cholangiocarcinoma). RESULTS: Small RNA sequencing and RT-qPCR showed that EV-miR-200 family members were significantly overexpressed in PDAC vs. benign disease. Combined expression of the EV-miR-200 family showed an AUC of 0.823. In an independent validation cohort, application of this model showed a sensitivity, specificity and AUC of 100%, 88%, and 0.97, respectively, for diagnosing PDAC. CONCLUSIONS: This is the first study to validate plasma EV-miR-200 members as a clinically-useful diagnostic biomarker for PDAC. Further validation in larger cohorts and clinical trials is essential. These findings also suggest the potential utility in monitoring response and/or recurrence.


Assuntos
Carcinoma Ductal Pancreático , Vesículas Extracelulares , MicroRNAs , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , MicroRNAs/sangue , MicroRNAs/genética , Feminino , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Idoso , Biomarcadores Tumorais/sangue , Estudos Prospectivos
8.
J Agric Food Chem ; 72(33): 18720-18730, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39068643

RESUMO

A novel class of halogenated curcumin, X-Cur (X = F, Cl, or Br), was synthesized, and its photosensitivity was evaluated. The results showed that Br-Cur with the highest singlet oxygen (1O2) generation capacity exhibited a better photodynamic inactivation (PDI) effect on the small yellow croaker (Larimichthys polyactis) than curcumin. This was attributed to the heavy atom effect of Br, which resulted in Br-Cur having the smallest singlet-triplet energy difference ΔEst(S1-T3) (0.140 eV) and the largest spin-orbit coupling value (0.642262 cm-1). When L. polyactis was treated with 0.025 wt % Br-Cur and exposed to blue LED irradiation (450 nm, 20 mW/cm2) for 20 min, the increase in the total volatile basic nitrogen content (28.23 ± 2.38 mg/100 g on day 6), pH, and total viable count (6.13 ± 0.06 log CFU/g on day 6) could be effectively controlled. Accordingly, Br-Cur is a promising photosensitizer for PDI preservation.


Assuntos
Curcumina , Perciformes , Fármacos Fotossensibilizantes , Animais , Curcumina/farmacologia , Curcumina/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Conservação de Alimentos/métodos , Conservação de Alimentos/instrumentação , Halogenação , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Luz
9.
Sci Rep ; 14(1): 17163, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060304

RESUMO

Water permeability of reinforced concrete is essential for transportation of ingress ions inside concrete structures. The coupling effect of permeability and loading presents a challenge for the experimental simulation of water-permeate reinforced concrete subjected to tension. This renders the development of the model based on dimensionless analysis, using a series of experimental tests from an innovative experimental system that allows simultaneous measurement of permeability and crack width. The experiments focused on both ordinary concrete and high strength concrete under tension. The relationship between permeability and variables such as deformation, diameter of rebars, tensile load, and crack width under tension was formulated through multiple regression analysis using the testing data. The load to deformation characteristics determines the permeability of the concrete under tension. The proposed model accounts for the influence of continuous loading on permeability, as demonstrated by the robust analysis and proposed yield effective point. The robust analysis demonstrates that the diameter of the rebar, load, and crack width exert minimal influence on the permeability of concrete at lower significance levels. However, permeability variations become pronounced from 0.5 threshold, with significant changes observed between 0.5 and 0.9 thresholds. The findings indicate a differential impact of the variables on the permeability of concrete under tension. The yield-effective points delineate the relationship between the rebar diameter, load, and crack-width on the permeability of concrete with a threshold of 0.5, 0.5, and 0.58, respectively. At a threshold of 0.78, higher permeability will occur in the concrete, attributed to the prevalence of deformation. This deformation highlights the parameters with the most significant influence on the permeability of concrete under tension. The robust analysis and yield effective point derivative are useful parameters to measure concrete permeability and evaluate the behavior of the permeability model under tension.

10.
Int J Surg ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041944

RESUMO

BACKGROUND: Biliary obstruction can be due to both malignant and benign pancreaticobiliary disease. Currently, there are no biomarkers that can accurately help make this distinction. MicroRNAs (miRNAs) are stable molecules in tissue and biofluids that are commonly deregulated in cancer. The MIRABILE study aimed to identify miRNAs in bile that can differentiate malignant from benign pancreaticobiliary disease. MATERIALS AND METHODS: There were 111 patients recruited prospectively at endoscopic retrograde cholangiopancreatography (ERCP) or percutaneous transhepatic cholangiography (PTC) for obstructive jaundice, and bile was aspirated for cell-free RNA (cfRNA) extraction and analysis. In a discovery cohort of 78 patients (27 with pancreatic ductal adenocarcinoma (PDAC), 14 cholangiocarcinoma (CCA), 37 benign disease), cfRNA was subjected to small-RNA sequencing. LASSO regression was used to define bile miRNA signatures, and NormFinder to identify endogenous controls. In a second cohort of 87 patients (34 PDAC, 14 CCA, 39 benign disease), RT-qPCR was used for validation. RESULTS: LASSO regression identified 14 differentially-expressed bile miRNAs of which 6 were selected for validation. When comparing malignant and benign pancreaticobiliary disease, bile miR-340 and miR-182 were validated and significantly differentially expressed (P<0.05 and P<0.001, respectively). This generated an AUC of 0.79 (95%CI 0.70-0.88, sensitivity 65%; specificity 82%) in predicting malignant disease. CONCLUSION: Bile collected during biliary drainage contains miRNAs able to differentiate benign from malignant pancreaticobiliary diseases in patients with obstructive jaundice. These bile miRNAs have the potential to increase diagnostic accuracy.

11.
Surg Endosc ; 38(8): 4329-4335, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874609

RESUMO

BACKGROUND: Liver surgery is associated with a significant hospital stay regardless the type of liver resection. A large incision is essential for open liver surgery which is a major factor in the course of the patient's recovery. For patients with small parenchyma liver lesions requiring surgical resection, robotic surgery potentially offers the opportunity to transform the patient's post-operative course. A day-case robotic liver resection pathway was formulated and implemented at our institution when patients were planned for discharge within 24 h of admission for liver surgery. METHODS: Single surgeon case series of cases performed at a tertiary hepatobiliary and pancreatic centre between September 2022 and November 2023. The inclusion criteria were non-anatomical wedge resections, < 2 anatomical segmental resections, left lateral hepatectomy and minimally invasive surgery. RESULTS: This is the first series of robotic day-case minor liver resection in the United Kingdom. 20 patients were included in this case series. The mean operative time was 86.6 ± 30.9 min and mean console time was 58.6 ± 24.5 min. Thirteen patients (65%) were discharged within 24 h of surgery. The main cause of hospitalisation beyond 24 h was inadequate pain relief. There were no Clavien-Dindo grade III or above complications, no 30-day readmission and 90-day mortalities. CONCLUSION: This case series demonstrates that robotic day-case liver resection is safe and feasible. Robust follow-up pathways must be in place to allow for the safe implementation of this approach, to monitor for any complications and to allow intervention as required in a timely manner.


Assuntos
Procedimentos Cirúrgicos Ambulatórios , Hepatectomia , Duração da Cirurgia , Procedimentos Cirúrgicos Robóticos , Humanos , Procedimentos Cirúrgicos Robóticos/métodos , Hepatectomia/métodos , Feminino , Pessoa de Meia-Idade , Masculino , Idoso , Procedimentos Cirúrgicos Ambulatórios/métodos , Tempo de Internação/estatística & dados numéricos , Adulto , Centros de Atenção Terciária
12.
Front Psychiatry ; 15: 1397706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938464

RESUMO

Objectives: This study aims to evaluate the efficacy of repeated transcranial magnetic stimulation (rTMS) combined with fluoxetine in enhancing the early antidepressant response in first-episode adolescent depression cases, providing insights for patient diagnosis and treatment. Methods: One hundred and thirty-five adolescents experiencing their first depressive episode were randomly assigned to either a sham group treated with fluoxetine or to low or high repetitive transcranial magnetic stimulation (rTMS) groups receiving both rTMS and fluoxetine. Therapeutic effects were assessed by comparing changes in Hamilton Depression Scale (HAMD-17) scores, cognitive function scores from the Wisconsin Card Sorting Test (WCST), and Clinical Global Impression-improvement (CGI-I) scores, along with recording adverse reactions. Results: The total effectiveness rate in the rTMS groups (Low, 95.56%; High, 97.78%) was significantly higher than in the Sham rTMS group (80%) (F = 11.15, P<0.0001). Post-treatment, not only the Low but also the High rTMS group exhibited more significant reductions in HAMD-17 (Low, 21.05; High, 21.45) and CGI-I scores (Low, 3.44; High, 3.60) compared to the Sham rTMS group (HAMD-17, 16.05; CGI-I, 2.57) (two weeks: F = 7.889, P = 0.0006; four weeks: F = 15.900, P<0.0001). Additionally, the two rTMS groups exhibited fewer erroneous responses and persistent errors in the WCST and completed more WCST categorizations than the Sham rTMS group. There was no significant difference in adverse reaction rates between the groups (F=4.421, P=0.0794). Conclusions: The combination of fluoxetine with rTMS demonstrates enhanced therapeutic effectiveness in treating adolescent depression, effectively controlling disease progression, reducing depressive symptoms, and improving cognitive function, making it a valuable clinical approach.

13.
Food Res Int ; 188: 114492, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823875

RESUMO

Two types of curcumin-loaded food-grade nano-silica (F-SiO2) hybrid materials were successfully synthesized using the rotary evaporation method (F-SiO2@Cur) and the adsorption method (Cur@F-SiO2). The microstructure and spectral analyses confirmed that the curcumin in F-SiO2@Cur was loaded within the nanopores in a non-aggregate form rather than being adsorbed onto the surface (Cur@F-SiO2). Additionally, F-SiO2@Cur exhibited remarkable water solubility (1510 ± 50.33 µg/mL) and photostability (a photodegradation ratio of only 59.22 %). Importantly, F-SiO2@Cur obtained a higher capacity for the generation of singlet oxygen (1O2) compared to control groups. Consequently, F-SiO2@Cur-mediated photodynamic inactivation (PDI) group attained the highest score in sensory evaluation and the best color protection effect in PDI experiment of small yellow croaker (Larimichthys polyactis) at 4 °C. Moreover, F-SiO2@Cur could effectively controlled total volatile basic nitrogen (TVB-N) content, pH, and total viable count (TVC), thereby prolonging the shelf life. Therefore, F-SiO2@Cur-mediated PDI is an effective fresh-keeping technology for aquatic products.


Assuntos
Curcumina , Conservação de Alimentos , Perciformes , Dióxido de Silício , Curcumina/farmacologia , Curcumina/química , Animais , Dióxido de Silício/química , Conservação de Alimentos/métodos , Nanopartículas , Alimentos Marinhos , Solubilidade , Oxigênio Singlete , Fotólise , Humanos
14.
Chemosphere ; 362: 142468, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38821125

RESUMO

Combustion of organic solid wastes releases phenolic compounds which can act as precursors in the formation of environmentally persistent free radicals (EPFRs) in the post-flame, cooling zone of waste combustion. The study investigated the generation mechanism of EPFRs from phenolic compounds catalyzed by transition metals in air atmosphere under simulated combustion conditions. Representative combustion-derived phenolic compounds were used, and SiO2 particulates containing different mass ratio of Fe2O3 were synthesized as carriers. EPFRs formed had g-factors between 1.9998 and 2.0066, indicating phenoxyl-, cyclopentadienyl-, and semiquinone-type radicals, along with paramagnetic F-centers. The promotion effect of phenolic compounds on EPFR formation during heating decreased as catechol > hydroquinone > phenol > p-cresol. This trend is related to hydroxyl groups and activation energy. In particular, catechol chemically adsorbed on Fe2O3 at 600 K led to the formation of EPFRs with relatively high spin concentrations (up to 1.28 × 1017 spin/g). Higher Fe2O3 concentrations promoted the transformation of phenoxyl-type radicals into cyclopentadienyl-type and paramagnetic F-centers. However, as the Fe2O3 loading increased from 1.25% to 5%, the density of EPFRs decreased. The findings related to the influence of various precursors and Fe2O3 concentration on EPFR formation provide valuable insights for estimating EPFR generation and associated risk during combustion processes.


Assuntos
Compostos Férricos , Fenóis , Dióxido de Silício , Fenóis/química , Compostos Férricos/química , Dióxido de Silício/química , Radicais Livres/química , Catecóis/química , Poluentes Atmosféricos/química , Poluentes Atmosféricos/análise , Incineração , Adsorção
15.
Se Pu ; 42(4): 380-386, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38566427

RESUMO

The gas chromatography retention index (RI) is an important parameter for the identification of different types of compounds in the field of chromatographic analysis; however, the experimental collection of RI values is a extremely cumbersome process. Thus, there is an urgent need for the establishment of a simple, efficient, and accurate model for the prediction of the RI values of compounds. In this study, first, the experimental RI values for 60 plant essential oil constituents were obtained. Next, a model describing the hologram quantitative structure-activity relationship (HQSAR) between the structural properties of the essential oil constituents and their RI values was investigated and constructed. The optimal HQSAR model was established by setting the model parameters "fragment size", "fragment distinction", "hologram length" and "principal components" to "1-4", "C, Ch", "199", and "4", respectively. Finally, the predictive ability of the model was verified using external test set validation and leave-one-out cross-validation (LOO-CV). The experimental results were as follows, the root mean square error of prediction (RMSEP), predictive determination coefficient ([Formula: see text]), concordance correlation coefficient (CCC), and mean relative error (MRE) for external test set validation were 40.45, 0.984, 0.968, and 2.20%, respectively. Meanwhile, the root mean square error of cross validation (RMSECV) and MRE for LOO-CV were 72.56 and 4.17%, respectively. These findings demonstrate that the established HQSAR model has a good predictive ability and can accurately predict the RI values of plant essential oil constituents. In addition, the molecular contribution maps of the HQSAR model revealed that the RI values of aromatic compounds increase when hydroxyl groups are connected to their alkyl chains. Aliphatic compounds feature long chain alkyl groups, which can lead to an increase in RI values. The above phenomena highlight the promising application prospects of HQSAR for studying the RI values of plant essential oil constituents. Therefore, this study provides a reliable theoretical basis for predicting the RI values of other essential oil constituents.

16.
Soft Matter ; 20(12): 2812-2822, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446214

RESUMO

The droplet lossless directional motion control on slippery surfaces holds immense promise for applications in microfluidic chips, hazardous substance detection, chemical dispensing, etc. However, a significant challenge in this domain lies in efficiently developing soft, slippery surfaces with large-range anisotropic wettability and compatibility for curved scenarios. This study addressed this challenge through a quick 3D printing-assisted method to produce soft, ridged-slippery surfaces (SRSSs) as the droplet manipulation platform. The SRSSs demonstrated substantial anisotropic rolling resistances, measuring 116.9 µN in the perpendicular direction and 7.7 µN in the parallel direction, exhibiting a ratio of 15.2. Combining several extents of anisotropic wettability on a soft substrate could realize diverse reagent manipulation functions. Furthermore, these SRSSs showcased high compatibility with various droplet constituents, impressive liquid impact resistance, self-repair capability, and mechanical durability and thermal durability, ensuring exceptional applicability. As proofs of concept, the SRSSs were successfully applied in droplet control and classification for heavy metal ion detection, mechanical arm-based droplet grab and release, and cross-species transport, showcasing their remarkable versatility, compatibility, and practicality in advanced droplet microfluidic chips and water harvesting applications.

17.
Food Chem X ; 21: 101234, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38420509

RESUMO

Tea varieties play a crucial role on the quality formation of matcha. This research aimed to examine the impact of four specific tea plant varieties (Okumidori, Longjing 43, Zhongcha108, and E'Cha 1) on various aspects of matcha, including sensory evaluation, major components, color quality, volatile and non-volatile metabolomic profiles. The findings revealed that the levels of tea polyphenols, ester catechins, nonester catechins, and amino acids varied among these four varieties. Notably, 177 significant different metabolites, such as phenolic acids, flavonoids, tannins, alkaloids were identified among 1383 non-volatile compounds. In addition, 97 key aroma-active compounds were identified based on their odor activity value exceeding 1. Aldehydes, heterocyclic compounds, and ketones were closely associated with the formation of volatile metabolites. Overall, this study enhances our understanding of how different tea plant varieties impact the quality of matcha, and can provide valuable guidance for improving matcha varieties in a favorable direction.

18.
Food Chem X ; 21: 101207, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38370300

RESUMO

As the low water solubility of gallic acid (GA), its biological activities such as water-based antioxidant effect may be greatly reduced. Therefore, GA-loaded nanocomposites (F-SiO2@GA) with high water solubility were synthesized via solvent evaporation using food-grade silica (F-SiO2) as carriers in this work. The assessment of antioxidant capacity revealed that F-SiO2@GA exhibited considerably greater free-radical scavenging ability than free GA and the physical mixture of F-SiO2 and GA. In the photooxidation experiment of food-grade gardenia yellow pigment (GYP), F-SiO2@GA showed a notable antioxidant effect on GYP solution. Additionally, in the storage experiment on chilled whiteleg shrimp (Litopenaeus vannamei) treated with F-SiO2@GA, pH, total volatile basic nitrogen (TVBN), and thiobarbituric acid reactive substance (TBARS) values were effectively inhibited. In conclusion, the internal encapsulation of GA effectively prevented the self-aggregation phenomenon, thereby facilitating the exposure of its active phenolic hydroxyl group and significantly enhancing its water-based biological activity.

19.
Nat Commun ; 15(1): 1131, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326351

RESUMO

Early and accurate diagnosis of focal liver lesions is crucial for effective treatment and prognosis. We developed and validated a fully automated diagnostic system named Liver Artificial Intelligence Diagnosis System (LiAIDS) based on a diverse sample of 12,610 patients from 18 hospitals, both retrospectively and prospectively. In this study, LiAIDS achieved an F1-score of 0.940 for benign and 0.692 for malignant lesions, outperforming junior radiologists (benign: 0.830-0.890, malignant: 0.230-0.360) and being on par with senior radiologists (benign: 0.920-0.950, malignant: 0.550-0.650). Furthermore, with the assistance of LiAIDS, the diagnostic accuracy of all radiologists improved. For benign and malignant lesions, junior radiologists' F1-scores improved to 0.936-0.946 and 0.667-0.680 respectively, while seniors improved to 0.950-0.961 and 0.679-0.753. Additionally, in a triage study of 13,192 consecutive patients, LiAIDS automatically classified 76.46% of patients as low risk with a high NPV of 99.0%. The evidence suggests that LiAIDS can serve as a routine diagnostic tool and enhance the diagnostic capabilities of radiologists for liver lesions.


Assuntos
Inteligência Artificial , Neoplasias Hepáticas , Humanos , Estudos Retrospectivos , Radiologistas , Neoplasias Hepáticas/diagnóstico por imagem
20.
Aging (Albany NY) ; 16(4): 3934-3954, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38382106

RESUMO

OBJECTIVE: The enzyme Aspartyl tRNA synthetase 2 (DARS2) is a crucial enzyme in the mitochondrial tRNA synthesis pathway, playing a critical role in maintaining normal mitochondrial function and protein synthesis. However, the role of DARS2 in ESCA is unclear. MATERIALS AND METHODS: Transcriptional data of pan-cancer and ESCA were downloaded from UCSC XENA, TCGA, and GEO databases to analyze the differential expression of DARS2 between tumor samples and normal samples, and its correlation with clinicopathological features of ESCA patients. R was used for GO, KEGG, and GSEA functional enrichment analysis of DARS2 co-expression and to analyze the connection of DARS2 with glycolysis and m6A-related genes. In vitro experiments were performed to assess the effects of interfering with DARS2 expression on ESCA cells. TarBase v.8, mirDIP, miRTarBase, ENCORI, and miRNet databases were used to analyze and construct a ceRNA network containing DARS2. RESULTS: DARS2 was overexpressed in various types of tumors. In vitro experiments confirmed that interfering with DARS2 expression significantly affected the proliferation, migration, apoptosis, cell cycle, and glycolysis of ESCA cells. DARS2 may be involved in multiple biological pathways related to tumor development. Furthermore, correlation and differential analysis revealed that DARS2 may regulate ESCA m6A modification through its interaction with METTL3 and YTHDF1. A ceRNA network containing DARS2, DLEU2/has-miR-30a-5p/DARS2, was successfully predicted and constructed. CONCLUSIONS: Our findings reveal the upregulation of DARS2 in ESCA and its association with clinical features, glycolysis pathway, m6A modification, and ceRNA network. These discoveries provide valuable insights into the molecular mechanisms underlying ESCA.


Assuntos
Aspartato-tRNA Ligase , Carcinoma , Neoplasias Esofágicas , Humanos , Neoplasias Esofágicas/genética , Apoptose/genética , Ciclo Celular , Metiltransferases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...