Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 339: 122255, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823921

RESUMO

Mixed infectious vaginitis poses a serious threat to female reproductive health due to complex pathogenic factors, a long course and easy recurrence. Currently, antibiotic-based treatment methods are facing a crisis of drug resistance and secondary dysbiosis. Exploring effective drugs for the treatment of mixed vaginitis from Paeonia suffruticosa Andr., a natural traditional Chinese medicine with a long history of medicinal use, is a feasible treatment strategy. P. suffruticosa Andr. leaf extract (PLE) has significant anti-bacterial effects due to its rich content of polyphenols and flavonoids. The polyphenols in peony leaves have the potential to make carboxymethyl chitosan form in situ gel. In the current study, PLE and carboxymethyl chitosan were combined to develop another type of natural anti-bacterial anti-oxidant hydrogel for the treatment of mixed infectious vaginitis. Through a series of characterisations, CP had a three-dimensional network porous structure with good mechanical properties, high water absorption, long retention and a slow-release drug effect. The mixed infectious vaginitis mouse model induced by a mixture of pathogenic bacteria was used to investigate the therapeutic effects of CP in vivo. The appearance of the vagina, H&E colouring of the tissue and inflammatory factors (TNF-α, IL-6) confirm the good anti-vaginal effect of CP. Therefore, CP was expected to become an ideal effective strategy to improve mixed infection vaginitis due to its excellent hydrogel performance and remarkable ability to regulate flora.


Assuntos
Antibacterianos , Quitosana , Hidrogéis , Paeonia , Extratos Vegetais , Folhas de Planta , Quitosana/química , Quitosana/farmacologia , Quitosana/análogos & derivados , Feminino , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Folhas de Planta/química , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Paeonia/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/uso terapêutico , Vaginose Bacteriana/tratamento farmacológico , Vaginose Bacteriana/microbiologia , Antioxidantes/farmacologia , Antioxidantes/química
2.
Int J Biol Macromol ; 265(Pt 1): 130780, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471606

RESUMO

Wound healing is a dynamic and complex biological process, and traditional biological excipients cannot meet the needs of the wound healing process, and there is an urgent need for a biological dressing with multifunctionality and the ability to participate in all stages of wound healing. This study developed tea polyphenol (TP) incorporated multifunctional hydrogel based on oxidized Bletilla striata polysaccharide (OBSP) and adipic acid dihydrazide modified gelatin (Gel-ADH) with antimicrobial, antioxidant hemostatic, and anti-inflammatory properties to promote wound healing. The composite OBSP, Gel-ADH, TP (OBGTP) hydrogels prepared by double crosslinking between OBSP, TP and Gel-ADH via Schiff base bonding and hydrogen bonding had good rheological and swelling properties. The introduction of TP provided the composite hydrogel with excellent antioxidant antibacterial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coil). In the rat liver hemorrhage model and skin injury model, the OBGTP composite hydrogel had significant (p < 0.001) hemostatic ability, and had the ability to accelerate collagen deposition, reduce the expression of inflammatory factors, and promote rapid wound healing. In addition, OBGTP hydrogels had adhesive properties and good biocompatibility. In conclusion, OBGTP multifunctional composite hydrogels have great potential for wound healing applications.


Assuntos
Hemostáticos , Orchidaceae , Animais , Ratos , Gelatina , Hidrogéis , Antioxidantes/farmacologia , Staphylococcus aureus , Cicatrização , Antibacterianos/farmacologia , Escherichia coli , Polifenóis/farmacologia , Chá
3.
Int J Biol Macromol ; 254(Pt 2): 127914, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939765

RESUMO

The expeditious healing of chronic wounds with bacterial infections poses a formidable challenge in clinical practice because of the persistent bacterial presence, excessive inflammation, and the accumulation of reactive oxygen species (ROS) in clinical practice. Thus, in this study, natural antimicrobial material microneedles (MNs) with multifunctional properties were prepared by adding peony leaf extract (PLE) into a matrix of methacrylated Bletilla striata polysaccharide (BSPMA) and methacrylated chitosan (CSMA) via cross-linking under ultra-violet light to accelerate the rapid healing of chronic wounds with bacterial infections. Results showed that BCP-MNs effectively inhibited the growth of Escherichia coli, Staphylococcus aureus, and methicillin-resistant S. aureus (MRSA) by disrupting bacterial cell membranes and accelerated the healing of infected wounds by enhancing cell migration, epidermal regeneration, pro-collagen deposition, and angiogenesis and reducing inflammation. Furthermore, BCP-MNs not only possessed good mechanical properties, stability, and biocompatibility but also showed potent antioxidant effects to eliminate excessive ROS accumulation in the wound bed. In conclusion, BCP-MNs possess multifunctional wound-healing properties and can serve as excellent wound dressing in to treat infected wounds.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Espécies Reativas de Oxigênio , Bandagens , Escherichia coli , Inflamação , Antibacterianos , Hidrogéis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...