RESUMO
This study aimed to evaluate the predictive values of phosphoglucomutase-1 (PGM1) expression for prognosis in patients with hepatocellular carcinoma (HCC). PGM1 expression was assessed by immunohistochemistry in tissue microarrays. The relationship of PGM1 expression level with pathologic parameters and prognosis values was respectively analyzed by χ2 test and Cox regression. The accuracy of independent risk factors in predicting prognosis was calculated by receiver operating characteristic curve. HCC patient-derived xenograft models were performed to evaluate the nuclear PGM1 antitumor effect. The results showed that PGM1 expression was low in HCC tissues. Nuclear PGM1 was an independent prognostic factor for overall survival and time to recurrence. Cox regression showed that nuclear PGM1, serum α-fetoprotein, liver cirrhosis, and TNM staging stage were independent risk predictors for HCC. Receiver operating characteristic curve demonstrated that combination of independent predictors had better prognostic value than TNM staging alone. Moreover, patient-derived xenograft models showed antitumor effect of nuclear PGM1. We found that low expression of nuclear PGM1 was detected in HCC tissues and associated with poor prognostic. Nuclear PGM1 was an independent prognostic factor in patients with HCC. Furthermore, nuclear PGM1 combining other independent risk factors showed a better prognostic value. Nuclear PGM1 was a useful prognostic biomarker for patients with HCC.
RESUMO
BACKGROUND: Prolonged Field Care (PFC) is a military adaptation of Tactical Combat Casualty Care providing extended pre-hospital management during delayed extrication. Effects of addition of Valproic Acid (VPA) to Fresh Frozen Plasma (FFP) in a PFC model of hemorrhagic shock and traumatic brain injury (TBI) are not known. We hypothesized that VPA is associated with decreased neurological impairment, and its protective changes are detected at the transcriptomic level. STUDY DESIGN: Swine underwent TBI and 40%-blood volume hemorrhage. After 2-hours of shock, they were randomized to: 1)normal saline (NS), 2)NS+250 ml FFP (NS+FFP), or 3)NS+FFP+150 mg/kgVPA(NS+FFP+VPA). At 72-hours, they were transfused packed red blood cells before being euthanized. Intraoperative variables and neurological outcomes were compared. Brain lesion size was measured, and gene expression profiles were analyzed using RNA-sequencing. Pathway and network analyses were performed on differentially expressed genes. Real-time PCR was performed to validate key genes. RESULTS: NS+FFP and NS+FFP+VPA required significantly less crystalloid resuscitation(974 ml-NS+FFP; 1461ml-NS+FFP+VPA vs. 4540 ml-NS, p<0.001), had smaller brain lesion size(2477mm3-NS+FFP; 3018.0mm3-NS+FFP+VPA vs. 4517.0mm3-NS, p<0.01), and less functional neurologic impairment compared to NS. Per pathway analysis of differentially expressed genes, VPA was associated with enrichment of numerous metabolic changes in injured brains, which were not observed with FFP. Network analysis showed enrichment of various gene networks. MT-ATP8 gene was downregulated in VPA-treated animals. CONCLUSIONS: The addition of FFP to the resuscitation protocol resulted in a significant reduction in crystalloid requirements. Both, the FFP and FFP+VPA groups showed improved neurological recovery compared to NS alone and had distinctive transcriptomic profiles in injured brains at 72-hours. MT-ATP8, involved in worsening ischemia following brain injury, was down-regulated in VPA-treated animals.
RESUMO
Tanshinone IIA (Tan IIA), a neuroprotective natural compound extracted from Salvia miltiorrhiza, is used in stroke treatment. However, elucidating Tan IIA's neuroprotective mechanisms remains challenging due to limitations in assessing drug efficacy and biochemical parameters in clinical studies. This study investigated Tan IIA's impact on neuroinflammatory responses and its neuroprotective mechanisms using HMGB1- or TNF-α-stimulated BV2 microglia in a co-culture system with primary neuron cells. The results indicated that Tan IIA significantly reduced microglial activation induced by TNF-α or HMGB1. Concurrently, Tan IIA disrupted the interactions between HMGB1 and toll-like receptor 4 (TLR4), and between TNF-α and TNF receptor 1 (TNFR1), modulating the HMGB1/TLR4/nuclear factor-kappa B (NF-κB) and TNF-α/TNFR1/NF-κB signaling pathways and related protein expressions. Moreover, co-culture experiments showed that neuronal apoptosis induced by microglial activation was reversed by Tan IIA. In conclusion, Tan IIA provides neuroprotection by modulating signaling pathways in microglia, thus preventing neuronal apoptosis. This study offers new insights into therapeutic targets for ischemic stroke.
RESUMO
Background: The liver and kidney are important metabolic organs in the body and common sites of tumor occurrence. Glycine-N-acyltransferase (GLYAT) is primarily expressed in the liver and kidney and downregulated in several tumors. But its specific functions and molecular mechanisms in liver cancer and clear cell renal cell carcinoma (ccRCC) have not yet been fully elucidated. The aim of this study was to explore the role and clinical significance of GLYAT in liver cancer and ccRCC. Methods: This study used proteomics technology to identify differentially expressed proteins in liver cancer. Western blot and immunohistochemistry (IHC) were used to analyze the protein expression pattern of GLYAT. assays were performed in liver cancer and ccRCC cells. Xenograft models in nude mice were used to confirm the roles of GLYAT in liver cancer. Moreover, the downstream regulatory proteins of GLYAT were identified by proteomics. Results: GLYAT was lowly expressed in liver cancer and ccRCC. Immunofluorescence staining indicated that GLYAT was mainly expressed in the cytoplasm, particularly the mitochondria. Kaplan-Meier curves showed that the low protein expression of GLYAT was correlated with a poor prognosis in liver cancer and ccRCC patients. Moreover, GLYAT expression was associated with several clinical parameters in liver cancer. Cell experiments showed that the overexpression of GLYAT inhibited cell proliferation and migration abilities; however, interfering GLYAT protein expression rescued these abilities in GLYAT overexpression (GLYAT-OE) cells. In vivo assays confirmed the tumor-suppressor function of GLYAT in liver cancer. Moreover, our research showed that GLYAT downregulated Rho-associated coiled-coil-containing protein kinase 1 (ROCK1). Conclusions: Our study showed that GLYAT is lowly expressed in liver cancer and ccRCC, emphasizing its prognostic significance. It also showed that GLYAT inhibits the progression of liver cancer and ccRCC by downregulating ROCK1.
RESUMO
OBJECTIVE: To validate the feasibility of an innovative nasal lining-framework complex (NLFC) for reconstructing total nasal defects. STUDY DESIGN: Retrospective cohort study. METHODS: This NLFC is composed of forearm flap and support framework. Twenty-four patients were followed up for a minimum of 17 months in 5 centers. Patients' medical history data were retrospectively analyzed. Visual Analog Scale (VAS) of surgeons and patients was used to evaluate the aesthetic effects and self-satisfaction. The Nasal Obstruction Symptom Evaluation (NOSE) questionnaire and Rhinoplasty Outcome Evaluation (ROE) questionnaire were used for functional assessment. RESULTS: Reconstruction surgeries were all successfully completed. The flaps healed well in all patients, and there were no signs of ischemic necrosis. The healing time of the wound was 10 to 14 days, except for 1 case with infection. The nasal lining was reconstructed and no significant contracture was observed. The average VAS of surgeons was 4.29 ± 0.69 (range 3-5). The mean VAS score of patients was 3.75 ± 0.79 (range 2-5). There was a significant positive correlation between patients' and surgeons' VAS scores (P = .007, r = .5355). The results of the NOSE questionnaire showed that all patients had no obvious ventilation restriction, and only 3 patients mildly felt that the nasal inspirations were slightly insufficient during exercise or exertion. The mean ROE of the patients was 21 ± 1.96 (range 18-25). CONCLUSION: This NLFC is suitable for total nasal reconstruction, which can provide effective support to prevent flap collapse and retraction and ensure good nasal ventilation. LEVEL OF EVIDENCE: Level IV, therapeutic study.
RESUMO
We report on the efficient generation of intense terahertz radiation from the organic crystal N-benzyl-2-methyl-4-nitroaniline pumped by chirped Ti:sapphire femtosecond laser pulses. The THz energy and spectrum as a function of the pump fluence and duration of the chirped laser pulses are studied systematically. For the appropriate positively chirped pump pulses, a significant boost in the THz generation efficiency by a factor of around 2.5 is achieved, and the enhancement of high-frequency components (>1â THz) shortens the THz pulse duration. Via complete characterization of THz properties and transmitted laser spectra, this nonlinear behavior is attributed to the extended effective interaction length for phase matching as a result of the self-phase modulation of the intense pump laser pulses. Numerical calculations well reproduce the experimental observation. Our results demonstrate a robust, efficient, strong-field (up to several MV/cm) THz source using the common sub-10â mJ and sub-100â fs Ti:sapphire laser systems without optical parametric amplifiers.
RESUMO
OBJECTIVE: The aim of this study was to investigate the dynamic expression of the SMAD family during guided bone regeneration for the reconstruction of cranio-maxillofacial bone defects. METHODS: A swine model of guided bone regeneration was established with one side of the rib as the trauma group and the contralateral as control group. Periosteal and regenerative tissue specimens were harvested at 9 time points in the early, middle, and late phases, and were subjected to gene sequencing and tissue staining. Expression data of each SMAD family were extracted for further analysis, in which the correlation of the expression of the respective members within and between groups and at different time points was analyzed. RESULTS: The expression of individual members of the SMAD family fluctuates greatly, especially during the first month. The SMAD3 and SMAD4 genes were the most highly expressed. The foldchange value of SMAD6 was the largest and remained above 1.5 throughout the process. The dynamic expression levels of SMAD2, SMAD4, SMAD5, SMAD6, and SMAD9 showed a significant positive correlation in both groups. The expression levels of each gene showed a positive correlation with other SMAD genes. Tissue staining showed that the overall contour of the regenerated bone tissue was basically formed within the first 1 month. CONCLUSION: The first month of guided bone regeneration is a critical period for bone regeneration and is an important period for the SMAD family to play a role. The SMAD6 may play an important role in the whole process of guided bone regeneration.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Coix seed, the dry mature seed kernel of the gramineous plant coix (Coix lacryma-jobi L. var. ma-yuen Stapf), is widely consumed as a traditional Chinese medicine and functional food in China and South Korea. We have previously demonstrated the protective effect of coixol, a polyphenolic compound extracted from coix, against Toxoplasma gondii (T. gondii) infection-induced lung injury. However, the protective effect of coixol on hepatic injury induced by T. gondii infection have not yet been elucidated. AIM OF THE STUDY: This study explores the impact of coixol on T. gondii infection-induced liver injury and elucidates the underlying molecular mechanisms. MATERIALS AND METHODS: Female BALB/c mice and Kupffer cells (KCs) were employed to establish an acute T. gondii infection model in vivo and an inflammation model in vitro. The study examined coixol's influence on the T. gondii-derived heat shock protein 70 (T.g.HSP70)/toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB signaling pathway in T. gondii-infected liver macrophages. Furthermore, a co-culture system of KCs and NCTC-1469 hepatocytes was developed to observe the impact of liver macrophages infected with T. gondii on hepatocyte injury. RESULTS: Coixol notably inhibited the proliferation of tachyzoites and the expression of T.g.HSP70 in mouse liver and KCs, and attenuated pathological liver injury. Moreover, coixol decreased the production of high mobility group box 1, tumor necrosis factor-α, and inducible nitric oxide synthase by suppressing the TLR4/NF-κB signaling pathway in vitro and in vivo. Coixol also mitigated KCs-mediated hepatocyte injury. CONCLUSIONS: Coixol protects against liver injury caused by T. gondii infection, potentially by diminishing hepatocyte injury through the suppression of the inflammatory cascade mediated by the T.g.HSP70/TLR4/NF-κB signaling pathway in KCs. These findings offer new perspectives for developing coixol as a lead compound for anti-T. gondii drugs.
Assuntos
Proteínas de Choque Térmico HSP70 , Camundongos Endogâmicos BALB C , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Toxoplasma , Animais , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Toxoplasma/efeitos dos fármacos , Feminino , Camundongos , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Fígado/efeitos dos fármacos , Fígado/parasitologia , Fígado/metabolismo , Fígado/patologia , Toxoplasmose/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/parasitologia , Coix/químicaRESUMO
Superconductivity in a highly correlated kagome system has been theoretically proposed for years (refs. 1-5), yet the experimental realization is hard to achieve6,7. The recently discovered vanadium-based kagome materials8, which exhibit both superconductivity9-11 and charge-density-wave orders12-14, are nonmagnetic8,9 and weakly correlated15,16. Thus these materials are unlikely to host the exotic superconductivity theoretically proposed. Here we report the discovery of a chromium-based kagome metal, CsCr3Sb5, which is contrastingly featured with strong electron correlations, frustrated magnetism and characteristic flat bands close to the Fermi level. Under ambient pressure, this kagome metal undergoes a concurrent structural and magnetic phase transition at 55 K, with a stripe-like 4a0 structural modulation. At high pressure, the phase transition evolves into two transitions, possibly associated with charge-density-wave and antiferromagnetic spin-density-wave orderings. These density-wave-like orders are gradually suppressed with pressure and, remarkably, a superconducting dome emerges at 3.65-8.0 GPa. The maximum of the superconducting transition temperature, Tcmax = 6.4 K, appears when the density-wave-like orders are completely suppressed at 4.2 GPa, and the normal state exhibits a non-Fermi-liquid behaviour, reminiscent of unconventional superconductivity and quantum criticality in iron-based superconductors17,18. Our work offers an unprecedented platform for investigating superconductivity in correlated kagome systems.
RESUMO
Depression, recognized globally as a primary cause of disability, has its pathogenesis closely related to neuroinflammation and neuronal damage. Arctiin (ARC), the major bioactive component of Fructus arctii, has various pharmacological activities, such as anti-inflammatory and neuroprotective effects. Building on previous findings that highlighted ARC's capability to mitigate depression by dampening microglial hyperactivation and thereby reducing neuroinflammatory responses and cortical neuronal damage in mice, the current study delves deeper into ARC's therapeutic potential by examining its impact on hippocampal neuronal damage in depression. Utilizing both chronic unpredictable mild stress (CUMS)-induced depression model in mice and corticosterone (CORT)-stimulated PC12 cell model of neuronal damage, the techniques including Nissl staining, immunohistochemistry, western blotting, ELISA, lactate dehydrogenase assays, colony formation assays, immunofluorescence staining and molecular docking were employed to unravel the mechanisms behind ARC's neuroprotective effects. The findings revealed that ARC not only mitigates hippocampal neuropathological damage and reduces serum CORT levels in CUMS-exposed mice but also enhances cell activity while reducing lactate dehydrogenase release in CORT-stimulated PC12 cells. ARC attenuated neuroinflammatory responses and neuronal apoptosis by inhibiting the overactivation of the P2X7 receptor (P2X7R)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling pathway, similar to the effect of A438079 (P2X7R antagonist). Interestingly, pretreatment with A438079 blocked the neuroprotective effect of ARC. Computer modeling predicted that both ARC and A438079 have strong binding with P2X7R and they have the same binding site. These results suggested that ARC may exert a neuroprotective role by binding to P2X7R, thereby inhibiting the P2X7R/NLRP3 inflammasome signaling pathway.
RESUMO
To achieve precise grasping and spreading of irregular sheet-like soft objects (such as leather) by robots, this study addresses several challenges, including the irregularity of leather edges and the ambiguity of feature recognition points. To tackle these issues, this paper proposes an innovative method that involves alternately grasping the lowest point twice and using planar techniques to effectively spread the leather. We improved the YOLOV8 algorithm by incorporating the BIFPN network structure and the WIOU loss function, and trained a dedicated dataset for the lowest grasping points and planar grasping points, thereby achieving high-precision recognition. Additionally, we determined the optimal posture for grasping the lowest point and constructed an experimental platform, successfully conducting multiple rounds of leather grasping and spreading experiments with a success rate of 72%. Through an in-depth analysis of the failed experiments, this study reveals the limitations of the current methods and provides valuable guidance for future research.
RESUMO
BACKGROUND: Infection by Toxoplasma gondii can lead to severe pneumonia, with current treatments being highly inadequate. The NLRP3 inflammasome is one member of the NOD-like receptor family with a pyrin domain, which is crucial in the innate immune defense against T. gondii. Research has shown that resveratrol (RSV) prevents lung damage caused by this infection by inhibiting the T. gondii-derived heat shock protein 70/TLR4/NF-κB pathway, thus reducing the macrophage-driven inflammatory response. However, it should be mentioned that the participation of NLRP3 inflammasome in the immune response to the lung injuries caused by T. gondii infections is not entirely clear. PURPOSE: This study aims to clarify how RSV ameliorates lung damage triggered by Toxoplasma gondii infection, with a particular focus on the pathway involving TLR4, NF-κB, and the NLRP3 inflammasome. METHODS: Both in vitro and in vivo models of infection were developed by employing the RH strain of T. gondii in BALB/c mice and RAW 264.7 macrophage cell lines. The action mechanism of RSV was explored using techniques such as molecular docking, surface plasmon resonance, ELISA, Western blot, co-immunoprecipitation, and immunofluorescence staining. RESULTS: Findings indicate that the suppression of TLR4 or NF-κB impacts the levels of proteins associated with the NLRP3 inflammasome pathway. Additionally, a significant affinity for binding between RSV and NLRP3 was observed. Treatment with RSV led to a marked reduction in the activation and formation of the NLRP3 inflammasome within lung tissues and RAW 264.7 cells, alongside a decrease in IL-1ß concentrations in the bronchoalveolar lavage fluid. These outcomes align with those seen when using the NLRP3 inhibitor CY-09. Moreover, the application of CY-09 prior to RSV negated the latter's anti-inflammatory properties. CONCLUSION: Considering insights from previous research alongside the outcomes of the current investigation, it appears that the TLR4/NF-κB/NLRP3 signaling pathway emerges as a promising target for immunomodulation to alleviate lung injury from T. gondii infection. The evidence gathered in this study lays the groundwork for the continued exploration and potential future clinical deployment of RSV as a therapeutic agent with anti-Toxoplasma properties and the capability to modulate the inflammatory response.
Assuntos
Inflamassomos , Camundongos Endogâmicos BALB C , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Pneumonia , Resveratrol , Receptor 4 Toll-Like , Toxoplasma , Resveratrol/farmacologia , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Células RAW 264.7 , Receptor 4 Toll-Like/metabolismo , Pneumonia/tratamento farmacológico , Pneumonia/parasitologia , Toxoplasma/efeitos dos fármacos , NF-kappa B/metabolismo , Toxoplasmose/tratamento farmacológico , Pulmão/efeitos dos fármacos , Pulmão/parasitologia , Simulação de Acoplamento Molecular , Feminino , Transdução de Sinais/efeitos dos fármacos , Macrófagos/efeitos dos fármacosRESUMO
SUMMARY: Nasal reconstruction in pediatric patient is very challenging and it requires consideration of later nasal development. Herein, we introduce an innovative preauricular free flap pedicled with retrograde vascular (PFFPRV) for pediatric nasal reconstruction. In this PFFPRV technique, the retrograde superficial temporal vessels were used as the flap pedicle. The lateral alar artery and angular vein were used as vessels of the nasal recipient zone. The flap vessels were anastomosed directly to the recipient area vessels without additional vessel transplantation. Eight pediatric patients with nasal defects underwent this operation. All patients were followed up for more than 2 years. Patients' medical history data were retrospectively analyzed. Preoperative and postoperative facial photos were compared and analyzed. The satisfaction of patient's parents with the aesthetic results was assessed. All patients were successfully operated without intraoperative complications. None of the procedures required additional blood vessel grafts. One patient developed a vascular crisis the next day after the surgery and underwent vascular exploration operation. The free flaps of all patients survived without wound infection or necrosis. The color difference of flap gradually became unobvious. The transplanted flap did not show obvious contracture or retraction, and the nose was symmetrical and developed well. The parents of all patients were satisfied with the surgical results. We think this PFFPRV technique can be a reasonable alternative strategy for reconstruction of pediatric nasal defect, with no adverse effect on nasal development and no need of vascular transplantation. LEVEL OF EVIDENCE: Level IV, therapeutic study.
RESUMO
Increasing evidence indicates a strong correlation between the deposition of cuticular waxes and drought tolerance. However, the precise regulatory mechanism remains elusive. Here, we conducted a comprehensive transcriptome analysis of two wheat (Triticum aestivum) near-isogenic lines, the glaucous line G-JM38 rich in cuticular waxes and the non-glaucous line NG-JM31. We identified 85,143 protein-coding mRNAs, 4,485 lncRNAs, and 1,130 miRNAs. Using the lncRNA-miRNA-mRNA network and endogenous target mimic (eTM) prediction, we discovered that lncRNA35557 acted as an eTM for the miRNA tae-miR6206, effectively preventing tae-miR6206 from cleaving the NAC transcription factor gene TaNAC018. This lncRNA-miRNA interaction led to higher transcript abundance for TaNAC018 and enhanced drought-stress tolerance. Additionally, treatment with mannitol and abscisic acid (ABA) each influenced the levels of tae-miR6206, lncRNA35557, and TaNAC018 transcript. The ectopic expression of TaNAC018 in Arabidopsis also improved tolerance toward mannitol and ABA treatment, whereas knocking down TaNAC018 transcript levels via virus-induced gene silencing in wheat rendered seedlings more sensitive to mannitol stress. Our results indicate that lncRNA35557 functions as a competing endogenous RNA to modulate TaNAC018 expression by acting as a decoy target for tae-miR6206 in glaucous wheat, suggesting that non-coding RNA has important roles in the regulatory mechanisms responsible for wheat stress tolerance.
Assuntos
Arabidopsis , MicroRNAs , RNA Longo não Codificante , RNA Endógeno Competitivo , RNA Longo não Codificante/genética , Ácido Abscísico/farmacologia , Arabidopsis/genética , Manitol , MicroRNAs/genética , RNA Mensageiro , Triticum/genética , CerasRESUMO
Biomimetic stress-relaxing hydrogels with reversible crosslinks attract significant attention for stem cell tissue regeneration compared with elastic hydrogels. However, stress-relaxing hyaluronic acid (HA)-based hydrogels fabricated using conventional technologies lack stability, biocompatibility, and mechanical tunability. Here, it is aimed to address these challenges by incorporating calcium or phosphate components into the HA backbone, which allows reversible crosslinking of HA with alginate to form interpenetrating networks, offering stability and mechanical tunability for mimicking cartilage. Diverse stress-relaxing hydrogels (τ1/2; SR50, 60-2000 s) are successfully prepared at ≈3 kPa stiffness with self-healing and shear-thinning abilities, favoring hydrogel injection. In vitro cell experiments with RNA sequencing analysis demonstrate that hydrogels tune chondrogenesis in a biphasic manner (hyaline or calcified) depending on the stress-relaxation properties and phosphate components. In vivo studies confirm the potential for biphasic chondrogenesis. These results indicate that the proposed stress-relaxing HA-based hydrogel with biphasic chondrogenesis (hyaline or calcified) is a promising material for cartilage regeneration.
Assuntos
Cartilagem , Condrogênese , Ácido Hialurônico , Hidrogéis , Regeneração , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Condrogênese/efeitos dos fármacos , Animais , Regeneração/efeitos dos fármacos , Cartilagem/efeitos dos fármacos , Cartilagem/fisiologia , Humanos , Estresse Mecânico , Engenharia Tecidual/métodos , CamundongosRESUMO
ABSTRACT: Severe traumatic brain injury (TBI) often initiates a systemic inflammatory response syndrome, which can potentially culminate into multiorgan dysfunction. A central player in this cascade is endotheliopathy, caused by perturbations in homeostatic mechanisms governed by endothelial cells due to injury-induced coagulopathy, heightened sympathoadrenal response, complement activation, and proinflammatory cytokine release. Unique to TBI is the potential disruption of the blood-brain barrier, which may expose neuronal antigens to the peripheral immune system and permit neuroinflammatory mediators to enter systemic circulation, propagating endotheliopathy systemically. This review aims to provide comprehensive insights into the "neuroendothelial axis" underlying endothelial dysfunction after TBI, identify potential diagnostic and prognostic biomarkers, and explore therapeutic strategies targeting these interactions, with the ultimate goal of improving patient outcomes after severe TBI.
Assuntos
Lesões Encefálicas Traumáticas , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Lesões Encefálicas Traumáticas/terapia , Citocinas/metabolismo , Barreira Hematoencefálica/metabolismo , Ativação do ComplementoRESUMO
Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide. Dysregulation of ribosome biogenesis increases the risk of cancer. RPF2 (ribosome production factor 2 homolog), a member of the BRIX family, is involved in ribosome biogenesis. However, the biological functions of RPF2 in HCC remain unclear. This study aims to evaluate the function of RPF2 and its clinical significance in HCC. We collected 45 pairs of HCC/adjacent samples and 291 HCC samples. These samples were used to perform immunohistochemical analysis and western blot. Six cell lines were used to perform western blot, and two of cell lines, SMCC-7721 and SNU449, were subjected to CCK-8, wound healing and transwell assays. Immunofluorescence staining was executed in SMCC-7721 cells. The protein levels of RPF2 were higher in HCC tissues than in adjacent tissues. Immunofluorescence staining showed that the RPF2 protein was located in the nucleuses, especially the nucleolus. Furthermore, the immunohistochemical analysis showed that high expression levels of nuclear RPF2 correlated with poor prognosis, vascular invasion, liver cirrhosis and tumor size. Cell experiments showed that overexpression of RPF2 promoted cell proliferation, migration and invasion, while knockdown of RPF2 tended to show the opposite effect. This is the first report that RPF2 is involved in HCC progression. The levels of RPF2 were significantly high in HCC tumors and had a side effect on prognosis in HCC patients. RPF2 has the potential to be a useful marker for HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Relevância Clínica , Prognóstico , Ribossomos/metabolismo , Ribossomos/patologia , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão GênicaRESUMO
Toll-like receptor (TLR) 7, a transmembrane signal transduction receptor expressed on the surface of endosomes, has become an attractive target for antiviral and cancer immunotherapies. TLR7 can induce signal transduction by recognizing single-stranded RNA or its analogs, leading to the release of cytokines such as IL-6, IL-12, TNF-α and type-I IFN. Activation of TLR7 helps to enhance immunogenicity and immune memory by stimulating immune cells. Herein, we identified a novel selective TLR7 agonist, GY101, and determined its ability to activate TLR7. In summary, in vitro, compound GY101 significantly induced the secretion of IL-6, IL-12, TNF-α and IFN-γ in mouse splenic lymphocytes; in vivo, peritumoral injection of GY101 significantly suppressed colon cancer CT26, as well as poorly immunogenic B16-F10 and 4T1 cancer cell-derived tumor growth by activating the infiltration of lymphocytes and polarization of M2-like macrophages into M1-like macrophages. These results demonstrate that GY101, as a potent TLR7 agonist, holds great potential for cancer immunotherapy.
Assuntos
Neoplasias do Colo , Receptor 7 Toll-Like , Animais , Camundongos , Receptor 7 Toll-Like/agonistas , Fator de Necrose Tumoral alfa , Interleucina-6 , Interleucina-12 , Adjuvantes Imunológicos , Neoplasias do Colo/tratamento farmacológicoRESUMO
The noncentrosymmetric ferromagnetic Weyl semimetal CeAlSi with simultaneous space-inversion and time-reversal symmetry breaking provides a unique platform for exploring novel topological states. Here, by employing multiple experimental techniques, we demonstrate that ferromagnetism and pressure can serve as efficient parameters to tune the positions of Weyl nodes in CeAlSi. At ambient pressure, a magnetism-facilitated anomalous Hall/Nernst effect (AHE/ANE) is uncovered. Angle-resolved photoemission spectroscopy (ARPES) measurements demonstrated that the Weyl nodes with opposite chirality are moving away from each other upon entering the ferromagnetic phase. Under pressure, by tracing the pressure evolution of AHE and band structure, we demonstrate that pressure could also serve as a pivotal knob to tune the positions of Weyl nodes. Moreover, multiple pressure-induced phase transitions are also revealed. These findings indicate that CeAlSi provides a unique and tunable platform for exploring exotic topological physics and electron correlations, as well as catering to potential applications, such as spintronics.
RESUMO
BACKGROUND: Immunohistochemistry (IHC) is an essential technique in surgical and clinical pathology for detecting diagnostic, prognostic, and predictive biomarkers for personalized cancer therapy. However, the lack of standardization and reference controls results in poor reproducibility, and a reliable tool for IHC quantification is urgently required. The objective of this study was to describe a novel approach in which H3F3B (histone H3, family 3B) can be used as an internal reference standard to quantify protein expression levels using IHC. METHODS: The authors enrolled 89 patients who had human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC). They used a novel IHC-based assay to measure protein expression using H3F3B as the internal reference standard. H3F3B was uniformly expressed at the protein level in all tumor regions in cancer tissues. HER2 expression levels were measured with the H-score using HALO software. RESULTS: Kaplan-Meier analysis indicated that, among patients who had HER2-positive BC in The Cancer Genome Atlas data set and the authors' data set, the subgroup with low HER2 expression had a significantly better prognosis than the subgroup with high HER2 expression. Furthermore, the authors observed that HER2 expression levels were precisely evaluated using the proposed method, which can classify patients who are at higher risk of HER2-positive BC to receive trastuzumab-based adjuvant therapy. Dual-color IHC with H3F3B is an excellent tool for internal and external quality control of HER2 expression assays. CONCLUSIONS: The proposed IHC-based quantification method accurately assesses HER2 expression levels and provides insights for predicting clinical prognosis in patients with HER2-positive BC who receive trastuzumab-based adjuvant therapy.