Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 87(1): 126, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382725

RESUMO

Phyllosphere microorganisms are essential for plant growth and health. Although there are an increasing number of studies showing that the composition of phyllosphere communities varies among different plant species, it remains unclear whether and how their bacterial and fungal community composition predictably varies with plant traits and leaf age. In this study, we used high-throughput sequencing to explore the diversity and composition of phyllosphere communities in needles of different ages (originating from different cohorts) for three evergreen coniferous species (Pinus koraiensis, Picea koraiensis, and Abies nephrolepis). Our results indicated that Gammaproteobacteria (bacteria) and Dothideomycetes (fungi) were dominant in newly formed needles, whereas Actinobacteria (bacteria) and Eurotiomycetes (fungi) were dominant in perennial needles. Tree species identity and needle age were the main factors explaining the variations of the α diversity (species richness of phyllosphere communities) and ß diversity (dissimilarity among phyllosphere communities). In particular, we found that leaf dry matter content, leaf mass per area, and total phosphorus content emerged as key predictors of composition and diversity of phyllosphere microbial communities, underscoring the major influence of tree species identity and needle age on phyllosphere communities through changes in plant functional traits. Finally, we found that the interaction between tree species identity and needle age also contributed significantly to explaining the diversity and composition of phyllosphere communities, probably because differences in plant functional traits or environmental conditions between new and perennial needles depend on tree growth rates and resource acquisition strategies. These findings provide new insights into the mechanisms of community assembly among different evergreen tree species and offer a better understanding of the interactions between plant traits and phyllosphere microorganisms during needle aging.


Assuntos
Bactérias , Microbiota , Folhas de Planta , Árvores , Folhas de Planta/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Árvores/microbiologia , Árvores/crescimento & desenvolvimento , Fungos/classificação , Fungos/genética , Fungos/fisiologia , Fungos/isolamento & purificação , Pinus/microbiologia , Pinus/crescimento & desenvolvimento , Abies/microbiologia , Picea/microbiologia , Picea/crescimento & desenvolvimento , Biodiversidade , Traqueófitas/microbiologia
2.
Plants (Basel) ; 13(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999611

RESUMO

Plant water use efficiency (WUE) is a comprehensive physiological indicator of plant growth and ability to adapt to drought. However, research on the mechanisms controlling WUE during plant growth and development remains weak. Here, we studied Pinus koraiensis as a typical evergreen conifer species in Northeast China. After collecting 80 tree samples with varying diameters at breast height (DBH), we measured δ13C and δ18O as an indicator of WUE, leaf morphology (volume, dry weight, and total epidermal area), ecological stoichiometry (carbon, nitrogen, and phosphorus content), and abiotic factors (light environment, soil pH, soil water content, and soil nutrient content). Correlational analysis of these variables revealed distinct differences between smaller/younger and larger/older plants: (1) In plants with DBH less than 52 cm, δ13C was positively related to DBH, and δ18O was negatively related to DBH. Plants with DBH greater than 52 cm showed no relationship between δ13C and DBH, and δ18O was positively related to DBH. (2) In plants with DBH less than 52 cm, there was a negative correlation between δ13C and δ18O and between δ13C and leaf phosphorus content (LP), but a positive correlation between δ13C and DBH, leaf mass per area (LMA), and leaf density (LD). The slopes of DBH-δ13C, δ18O-δ13C, leaf nitrogen content (LN)-δ13C, and LMA-δ13C correlations were greater in smaller plants than large plants. (3) Structural equation modelling showed that in smaller plants, DBH had a direct positive effect on δ13C content and a direct negative effect on δ18O, and there was a direct positive effect of light environment on δ18O. In larger plants, there was a direct negative effect of light environment on δ13C and a direct positive effect of DBH on light environment, as well as a negative effect of soil nitrogen content on leaf nitrogen. In smaller plants, DBH was the most important factor influencing δ13C, followed by δ18O and soil moisture, with light and soil pH showing minimal influence. In larger plants, light environment influenced δ13C the most, followed by soil nitrogen content and soil moisture content, with leaf nitrogen and DBH contributing little. The results suggest that water use efficiency strategies of P. koraiensis vary according to growth stage, and the effects of abiotic factors and functional traits vary at different growth stages.

3.
Ecol Lett ; 27(6): e14447, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38844351

RESUMO

Host specialization plays a critical role in the ecology and evolution of plant-microbe symbiosis. Theory predicts that host specialization is associated with microbial genome streamlining and is influenced by the abundance of host species, both of which can vary across latitudes, leading to a latitudinal gradient in host specificity. Here, we quantified the host specificity and composition of plant-bacteria symbioses on leaves across 329 tree species spanning a latitudinal gradient. Our analysis revealed a predominance of host-specialized leaf bacteria. The degree of host specificity was negatively correlated with bacterial genome size and the local abundance of host plants. Additionally, we found an increased host specificity at lower latitudes, aligning with the high prevalence of small bacterial genomes and rare host species in the tropics. These findings underscore the importance of genome streamlining and host abundance in the evolution of host specificity in plant-associated bacteria along the latitudinal gradient.


Assuntos
Tamanho do Genoma , Especificidade de Hospedeiro , Folhas de Planta , Simbiose , Folhas de Planta/microbiologia , Bactérias/genética , Bactérias/classificação , Genoma Bacteriano , Árvores/microbiologia
4.
Mol Breed ; 44(6): 43, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38836186

RESUMO

Actinidia arguta (A. arguta, kiwiberry) is a perennial deciduous vine with a strong overwintering ability. We hypothesized that trehalose metabolism, which plays a pivotal role in the stress tolerance of plants, may be involved in the cold acclimatization of A. arguta. Transcriptome analysis showed that the expression of AaTPPA, which encodes a trehalose-6-phosphate phosphatase (TPP), was upregulated in response to low temperatures. AaTPPA expression levels were much higher in lateral buds, roots, and stem cambia than in leaves in autumn. In AaTPPA-overexpressing (OE) Arabidopsis thaliana (A. thaliana), trehalose levels were 8-11 times higher than that of the wild type (WT) and showed different phenotypic characteristics from WT and OtsB (Escherichia coli TPP) overexpressing lines. AaTPPA-OE A. thaliana exhibited significantly higher freezing tolerance than WT and OtsB-OE lines. Transient overexpression of AaTPPA in A. arguta leaves increased the scavenging ability of reactive oxygen species (ROS) and the soluble sugar and proline contents. AaERF64, an ethylene-responsive transcription factor, was induced by ethylene treatment and bound to the GCC-box of the AaTPPA promoter to activate its expression. AaTPPA expression was also induced by abscisic acid. In summary, the temperature decrease in autumn is likely to induce AaERF64 expression through an ethylene-dependent pathway, which consequently upregulates AaTPPA expression, leading to the accumulation of osmotic protectants such as soluble sugars and proline in the overwintering tissues of A. arguta. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01475-8.

5.
J Agric Food Chem ; 72(19): 10692-10709, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712500

RESUMO

Abiotic stresses including cold, drought, salt, and iron deficiency severely impair plant development, crop productivity, and geographic distribution. Several bodies of research have shed light on the pleiotropic functions of BASIC HELIX-LOOP-HELIX (bHLH) proteins in plant responses to these abiotic stresses. In this review, we mention the regulatory roles of bHLH TFs in response to stresses such as cold, drought, salt resistance, and iron deficiency, as well as in enhancing grain yield in plants, especially crops. The bHLH proteins bind to E/G-box motifs in the target promoter and interact with various other factors to form a complex regulatory network. Through this network, they cooperatively activate or repress the transcription of downstream genes, thereby regulating various stress responses. Finally, we present some perspectives for future research focusing on the molecular mechanisms that integrate and coordinate these abiotic stresses. Understanding these molecular mechanisms is crucial for the development of stress-tolerant crops.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Secas , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Estresse Fisiológico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Temperatura Baixa , Produtos Agrícolas/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/química , Produtos Agrícolas/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ferro/metabolismo
6.
Ecol Evol ; 13(9): e10498, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674646

RESUMO

Under the background of global nitrogen deposition, temperate forest ecosystems are suffering increasing threats, and species diversity is gradually decreasing. In this study, nitrogen addition experiments were conducted on Korean pine (Pinus koraiensis) plantations in Northeast China to explore the effect of long-term nitrogen addition on herb species diversity to test the following hypothesis: long-term nitrogen addition further reduced plant species diversity by affecting plant growth, which may be due to soil acidification caused by excessive nitrogen addition. Experimental nitrogen addition was conducted from 2014 to 2021, and the nitrogen treatment levels were as follows: N0 (control treatment, 0/(kg N ha-1 year-1)), N20 (low nitrogen treatment, 20/(kg N ha-1 year-1)), N40 (medium nitrogen treatment, 40/(kg N ha-1 year-1)) and N80 (high nitrogen treatment, 80/(kg N ha-1 year-1)). A herb community survey was conducted in the region from 2015 to 2021. The results showed that long-term nitrogen addition decreased soil pH, changed the species and composition of herbaceous plants, and decreased the species diversity of understory herbaceous plants. With the increase in nitrogen application years, middle- and high-nitrogen treatments significantly reduced the diversity of early-spring flowering herbs and early-spring foliating herbs, and their diversity decreased with the decrease in soil pH, indicating that soil acidification caused by long-term nitrogen addition may lead to the decrease of plant diversity. However, for early-spring growing herbs, adequate nitrogen addition may promote their growth. Our results show that plants have evolved different life-history strategies based on their adaptation mechanisms to the environment, and different life-history strategies have different responses to long-term nitrogen addition. However, for most plants, long-term nitrogen application will have a negative impact on the growth and diversity of herbs in temperate forests.

7.
Plants (Basel) ; 12(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631117

RESUMO

Investigating the spatial distributions and associations of tree populations provides better insights into the dynamics and processes that shape the forest community. Korean pine (Pinus koraiensis) is one of the most important tree species in broad-leaved Korean pine mixed forests (BKMFs), and little is known about the spatial point patterns of and associations between Korean pine and community-level woody species groups such as coniferous and deciduous trees in different developmental stages. This study investigated the spatial patterns of Korean pine (KP) trees and then analyzed how the spatial associations between KP trees and other tree species at the community level vary in different BKMFs. Extensive data collected from five relatively large sample plots, covering a substantial area within the natural distribution range of KP in northeastern China, were utilized. Uni- and bivariate pair correlation functions and mark correlation functions were applied to analyze spatial distribution patterns and spatial associations. The DBH (diameter at breast height) histogram of KP trees in northeastern China revealed that the regeneration process was very poor in the Changbai Mountain (CBS) plot, while the other four plots exhibited moderate or expanding population structures. KP trees were significantly aggregated at scales up to 10 m under the HPP null model, and the aggregation scales decreased with the increase in size classes. Positive or negative spatial associations were observed among different life stages of KP trees in different plots. The life history stages of the coniferous tree group showed positive spatial associations with KP saplings and juvenile trees at small scales, and spatial independence or negative correlations with larger KP trees at greater scales. All broad-leaved tree groups (canopy, middle, and understory layers) exhibited only slightly positive associations with KP trees at small scales, and dominant negative associations were observed at most scales. Our results demonstrate that mature KP trees have strong importance in the spatial patterns of KP populations, and site heterogeneity, limited seed dispersal, and interspecific competition characterize the spatial patterns of KP trees and community-level spatial associations with respect to KP trees, which can serve as a theoretical basis for the management and restoration of BKMFs in northeastern China.

8.
New Phytol ; 240(4): 1534-1547, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37649282

RESUMO

Predicting and managing the structure and function of plant microbiomes requires quantitative understanding of community assembly and predictive models of spatial distributions at broad geographic scales. Here, we quantified the relative contribution of abiotic and biotic factors to the assembly of phyllosphere bacterial communities, and developed spatial distribution models for keystone bacterial taxa along a latitudinal gradient, by analyzing 16S rRNA gene sequences from 1453 leaf samples taken from 329 plant species in China. We demonstrated a latitudinal gradient in phyllosphere bacterial diversity and community composition, which was mostly explained by climate and host plant factors. We found that host-related factors were increasingly important in explaining bacterial assembly at higher latitudes while nonhost factors including abiotic environments, spatial proximity and plant neighbors were more important at lower latitudes. We further showed that local plant-bacteria associations were interconnected by hub bacteria taxa to form metacommunity-level networks, and the spatial distribution of these hub taxa was controlled by hosts and spatial factors with varying importance across latitudes. For the first time, we documented a latitude-dependent importance in the driving factors of phyllosphere bacteria assembly and distribution, serving as a baseline for predicting future changes in plant phyllosphere microbiomes under global change and human activities.


Assuntos
Bactérias , Microbiota , Humanos , RNA Ribossômico 16S/genética , Bactérias/genética , Plantas/genética , Folhas de Planta/microbiologia
9.
Ying Yong Sheng Tai Xue Bao ; 34(3): 577-587, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37087639

RESUMO

To understand the distribution pattern of leaflet traits in compound-leaved along with phyllotaxy, we selected three compound-leaved trees with opposite phyllotaxy in Xiaoxing' an Mountains, Fraxinus mandshurica, Phellodendron amurense, Juglans mandshurica, as the research objects. We measured leaf thickness, leaf area, specific leaf area, leaf dry matter content, palisade tissue thickness, spongy tissue thickness, ratio of palisade tissue thickness to spongy tissue thickness, and carbon content, nitrogen content, phosphorus content of leaflets at different phyllotaxy positions. We analyzed the variation of leaflet traits with phyllotaxy and the influence of phyllotaxy on the inner relationships between leaflet traits. The results showed that the variation of leaflet area, leaflet dry matter content, spongy tissue thickness and ratio of palisade tissue thickness to spongy tissue thickness with the increase of phyllotaxy were mainly divided into three types: increase, decrease, first increase and then decrease. Leaflet thickness, specific leaflet area, palisade tissue thickness, as well as nutrient contents did not change with phyllotaxy. Within compound leaves of three species, the variation coefficients and plasticity index of leaflet thickness, leaflet area, specific leaflet area, leaflet dry matter content, palisade tissue thickness, spongy tissue thickness, ratio of palisade tissue thickness to spongy tissue thickness ranged from 6.1% to 28.6% and from 0.14 to 0.70, respectively. Phyllotaxy had a significant effect on the bivariate correlation between leaflet traits. Specific leaflet area and leaflet dry natter content were negatively correlated in different phyllotaxy positions of F. mandshurica and J. mandshurica. Leaflet nitrogen content and phosphorus content showed a positive correlation in different phyllotaxy positions of F. mandshurica and P. amurense. The first and secondary leaflets (the first leaflets farthest from the base of the petiole) of J. mandshurica showed a conservative strategy, while the seventh and eighth leaflets showed an acquisition strategy. Leaflets of F. mandshurica and P. amurense did not show different ecological strategies.


Assuntos
Fraxinus , Juglans , Árvores , Folhas de Planta , Nitrogênio
10.
Plants (Basel) ; 12(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36771608

RESUMO

(1) Background: leaf structure traits are closely related to leaf photosynthesis, reflecting the ability of trees to obtain external resources in the process of growth. (2) Methods: We studied the morphological, chemical, anatomical, stomatal traits and maximum net photosynthetic rate of six broad-leaf species in northern temperate mixed broad-leaved Korean pine (Pinus koraiensis) forest. (3) Aim: To investigate whether there are differences in leaf structural traits of trees with different shade tolerances and different sizes and the effects of these differences on leaf photosynthetic capacity. (4) Results: the effects of leaf structure traits on leaf photosynthesis were different among trees with different shade tolerances or different sizes. Under the condition of light saturation, the net photosynthetic rate, nitrogen use efficiency, phosphorus use efficiency and stomatal conductance of shade-intolerant trees or small trees were higher than those of shade-tolerant trees or large trees. (5) Conclusions: the shade tolerance of tree species or the size of trees affect the traits of leaf structure and indirectly affect the photosynthetic ability of plants. When constructing the leaf trait-photosynthesis model, the shade tolerance and tree size of tree species should be taken into account.

11.
Plant Divers ; 45(6): 694-701, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38197009

RESUMO

The variation and correlation of leaf economics and vein traits are crucial for predicting plant ecological strategies under different environmental changes. However, correlations between these two suites of traits and abiotic factors such as soil water and nitrogen content remain ambiguous. We measured leaf economics and vein traits as well as soil water and nitrogen content for two different shade-tolerant species (Betula platyphylla and Acer mono) in four mixed broadleaved-Korean pine (Pinus koraiensis) forests along a latitudinal gradient in Northeast China. We found that leaf economics traits and vein traits were decoupled in shade-intolerant species, Betula platphylla, but significantly coupled in a shade-tolerant species, A. mono. We found stronger correlations among leaf traits in the shade tolerant species than in the shade intolerant species. Furthermore, leaf economic traits were positively correlated with the soil water gradient for both species, whereas vein traits were positively correlated with soil water gradient for the shade intolerant species but negatively correlated in the shade tolerant species. Although economic traits were positively correlated with soil nitrogen gradient in shade intolerant species but not correlated in shade tolerant species, vein traits were negatively correlated with soil nitrogen gradient in shade tolerant species but not correlated in shade intolerant species. Our study provides evidence for distinct correlations between leaf economics and vein traits and local abiotic factors of species differing in light demands. We recommend that the ecological significance of shade tolerance be considered for species when evaluating ecosystem functions and predicting plant responses to environmental changes.

12.
Front Microbiol ; 14: 1327481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188580

RESUMO

Litter decomposition is an important source of soil organic carbon, and it plays a key role in maintaining the stability of forest ecosystems. The microbial mechanism of soil organic carbon (SOC) formation in different urban forest planting patterns during litter lignocellulose degradation is still unclear. The key genes, microbes, and metabolites in the process of lignocellulose degradation and SOC formation were determined by metagenomics and metabolomics in different litter decomposition layers and soil layers in different urban forest planting patterns, including three types of broadleaf forests (BP forests), three types of coniferous forests (CP forests), and two types of mixed coniferous and broadleaf forests (MCBP forests). The results indicated that the cellulose, hemicellulose, and lignin concentrations from the undecomposed layer to the totally decomposed layer decreased by 70.07, 86.83, and 73.04% for CP litter; 74.30, 93.80, and 77.55% for BP litter; and 62.51, 48.58, and 90.61% for MCBP litter, respectively. The soil organic carbon of the BP forests and MCBP forests was higher than that of the CP forests by 38.06 and 94.43% for the 0-10 cm soil layer and by 38.55 and 20.87% for the 10-20 cm soil layer, respectively. Additionally, the gene abundances of glycoside hydrolases (GHs) and polysaccharide lyases (PLs) in the BP forests were higher than those in the MCBP forests and CP forests. Amino acid metabolism, sugar metabolism, TCA metabolism, and cAMP signaling metabolism were mainly between the CP forests and BP forests, while the TCA cycle, pyruvate metabolism, phenylalanine metabolism, and tyrosine metabolism were mainly between the BP forests and MCBP forests during litter decomposition. Additionally, ammonia nitrogen and hemicellulose were key factors driving SOC formation in the CP forests, while ammonia nitrogen, hemicellulose, and lignocellulose-degrading genes were key factors driving SOC formation in the BP forests. For the MCBP forests, cellulose, pH, ammonia nitrogen, and lignin were key factors driving SOC formation. Our findings revealed that the BP forests and MCBP forests had stronger lignocellulose degradation performance in the formation of SOC. This study provided a theoretical basis for the flow and transformation of nutrients in different urban forest management patterns.

13.
Proc Biol Sci ; 289(1983): 20221400, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36168755

RESUMO

Ecologists usually find that plant demography (e.g. survival and growth) changes along with plant size and environmental gradients, which suggests the effects of ontogeny-related processes and abiotic filtering. However, the role of functional traits underlying the size- and environment-demography relationships is usually overlooked. By measuring individual-level leaf traits of more than 2700 seedlings in a temperate forest, we evaluated how seedling traits mediated the size- and environment-demography relationships. We found leaves were larger for taller seedlings; leaf economics traits were more conservative in taller seedlings and under high-light and low-elevation conditions. Structural equation modelling showed that a higher survival probability for taller seedlings was indirectly driven by their larger leaf area. Although taller seedlings had lower growth rates, larger and more resource-conservative leaves could promote the growth of these tall seedlings. Environmental variables did not influence seedling survival and growth directly but did influence growth indirectly by mediating trait variation. Finally, species-specific variation in traits along with size and environments was associated with the species-specific variation in seedling survival and growth. Our study suggests that not only plant ontogeny- and environment-related ecological processes, but functional traits are also important intermediary agents underlying plant size- and environment-demography relationships.


Assuntos
Folhas de Planta , Plântula , Florestas , Fenótipo , Plantas
14.
Oecologia ; 199(4): 907-918, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35920917

RESUMO

Tree mycorrhizal type plays an important role in promoting plant species diversity and coexistence, via its mediating role in conspecific negative density dependence (CNDD), i.e., the process by which an individual's performance is impaired by the density of conspecific plants. Previous findings suggest that ectomycorrhizal (EM) tree species are generally less susceptible to CNDD than arbuscular mycorrhizal (AM) tree species, due to the chemical and physical protection that EM fungi provide their host with. We examined how CNDD effects on leaf herbivory, seedling growth, and survival differ between AM and EM seedlings of ten tree species collected over 3 years in an old-growth temperate forest in northeastern China. We found that AM and EM seedlings differed in how conspecific density affected their leaf herbivory, seedling growth, and survival. Specifically, AM seedlings leaf herbivory rates significantly increased with increasing conspecific seedling and adult density, and their growth and survival rates decreased with increasing conspecific adult density, these patterns were, however, absent in EM seedlings. Our work suggests that AM seedlings have a performance disadvantage relative to EM seedlings related to the negative effects from conspecific neighbors. We highlight the importance of integrating information on seedling leaf herbivory, seedling growth, to provide further understanding on potential mechanisms driving differences in CNDD between AM and EM tree seedlings.


Assuntos
Micorrizas , Árvores , Florestas , Herbivoria , Plântula
15.
Front Plant Sci ; 12: 620499, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249029

RESUMO

Various environmental stresses strongly influence plant development. Among these stresses is drought, which is a serious threat that can reduce agricultural productivity and obstruct plant growth. Although the mechanism of plants in response to drought has been studied extensively, the adaptive strategies of Amygdalus mira (Koehne) Yü et Lu grown in drought and rewatered habitats remain undefined. Amygdalus mira from the Tibetan Plateau has outstanding nutritional and medicinal values and can thrive in extreme drought. In this study, the physiological and proteomic responses in leaves of A. mira were investigated during drought and recovery period. The changes in plant growth, photosynthesis, enzymes, and non-enzymatic antioxidant under drought and rewatering were also analyzed in leaves. Compared with controls, A. mira showed stronger adaptive and resistant characteristics to drought. In addition, the proteomic technique was also used to study drought tolerance mechanisms in A. mira leaves. Differentially expressed proteins were identified using mass spectrometry. Accordingly, 103 proteins involved in 10 functional categories: cytoskeleton dynamics, energy metabolism, carbohydrate metabolism, photosynthesis, transcription and translation, transport, stress and defense, molecular chaperones, other materials metabolism, and unknown function were identified. These results showed that an increase of stress-defense-related proteins in leaves after drought treatment contributed to coping with drought. Importantly, A. mira developed an adaptive mechanism to scavenge reactive oxygen species (ROS), including enhancing antioxidant enzyme activities and non-enzymatic antioxidant contents, reducing energy, and adjusting the efficiency of gas exchanges. These results may help to understand the acclimation of A. mira to drought.

16.
Nat Commun ; 12(1): 3137, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035260

RESUMO

Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity.


Assuntos
Biodiversidade , Florestas , Micorrizas/fisiologia , Árvores/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Dispersão Vegetal , Microbiologia do Solo , Árvores/microbiologia
17.
Ecol Evol ; 11(10): 5344-5354, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34026011

RESUMO

Even with increasing interest in the ecological importance of intraspecific trait variation (ITV) for better understanding ecological processes, few studies have quantified ITV in seedlings and assessed constraints imposed by trade-offs and correlations among individual-level leaf traits. Estimating the amount and role of ITV in seedlings is important to understand tree recruitment and long-term forest dynamics. We measured ten different size, economics, and whole leaf traits (lamina and petiole) for more than 2,800 seedlings (height ≥ 10 cm and diameter at breast height < 1 cm) in 283 seedling plots and then quantified the amount of ITV and trait correlations across two biological (intraspecific and interspecific) and spatial (within and among plots) scales. Finally, we explored the effects of trait variance and sample size on the strength of trait correlations. We found about 40% (6%-63%) variation in leaf-level traits was explained by ITV across all traits. Lamina and petiole traits were correlated across biological and spatial scales, whereas leaf size traits (e.g., lamina area) were weakly correlated with economics traits (e.g., specific lamina area); lamina mass ratio was strongly related to the petiole length. Trait correlations varied among species, plots, and different scales but there was no evidence that the strength of trait relationships was stronger at broader than finer biological and spatial scales. While larger trait variance increased the strength of correlations, the sample size was the most important factor that was negatively related to the strength of trait correlations. Our results showed that a large amount of trait variation was explained by ITV, which highlighted the importance of considering ITV when using trait-based approaches in seedling ecology. In addition, sample size was an important factor that influenced the strength of trait correlations, which suggests that comparing trait correlations across studies should consider the differences in sample size.

18.
Proc Biol Sci ; 288(1948): 20203045, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33849320

RESUMO

The decline in species richness at higher latitudes is among the most fundamental patterns in ecology. Whether changes in species composition across space (beta-diversity) contribute to this gradient of overall species richness (gamma-diversity) remains hotly debated. Previous studies that failed to resolve the issue suffered from a well-known tendency for small samples in areas with high gamma-diversity to have inflated measures of beta-diversity. Here, we provide a novel analytical test, using beta-diversity metrics that correct the gamma-diversity and sampling biases, to compare beta-diversity and species packing across a latitudinal gradient in tree species richness of 21 large forest plots along a large environmental gradient in East Asia. We demonstrate that after accounting for topography and correcting the gamma-diversity bias, tropical forests still have higher beta-diversity than temperate analogues. This suggests that beta-diversity contributes to the latitudinal species richness gradient as a component of gamma-diversity. Moreover, both niche specialization and niche marginality (a measure of niche spacing along an environmental gradient) also increase towards the equator, after controlling for the effect of topographical heterogeneity. This supports the joint importance of tighter species packing and larger niche space in tropical forests while also demonstrating the importance of local processes in controlling beta-diversity.


Assuntos
Biodiversidade , Árvores , Ecologia , Ásia Oriental
19.
Ecology ; 102(2): e03234, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33107020

RESUMO

Foundation species structure forest communities and ecosystems but are difficult to identify without long-term observations or experiments. We used statistical criteria--outliers from size-frequency distributions and scale-dependent negative effects on alpha diversity and positive effects on beta diversity--to identify candidate foundation woody plant species in 12 large forest-dynamics plots spanning 26 degrees of latitude in China. We used these data (1) to identify candidate foundation species in Chinese forests, (2) to test the hypothesis--based on observations of a midlatitude peak in functional trait diversity and high local species richness but few numerically dominant species in tropical forests--that foundation woody plant species are more frequent in temperate than tropical or boreal forests, and (3) to compare these results with data from the Americas to suggest candidate foundation genera in northern hemisphere forests. Using the most stringent criteria, only two species of Acer, the canopy tree Acer ukurunduense and the shrubby treelet Acer barbinerve, were identified in temperate plots as candidate foundation species. Using more relaxed criteria, we identified four times more candidate foundation species in temperate plots (including species of Acer, Pinus, Juglans, Padus, Tilia, Fraxinus, Prunus, Taxus, Ulmus, and Corlyus) than in (sub)tropical plots (the treelets or shrubs Aporosa yunnanensis, Ficus hispida, Brassaiopsis glomerulata, and Orophea laui). Species diversity of co-occurring woody species was negatively associated with basal area of candidate foundation species more frequently at 5- and 10-m spatial grains (scale) than at a 20-m grain. Conversely, Bray-Curtis dissimilarity was positively associated with basal area of candidate foundation species more frequently at 5-m than at 10- or 20-m grains. Both stringent and relaxed criteria supported the hypothesis that foundation species are more common in mid-latitude temperate forests. Comparisons of candidate foundation species in Chinese and North American forests suggest that Acer be investigated further as a foundation tree genus.


Assuntos
Biodiversidade , Ecossistema , China , Florestas , Árvores
20.
Microb Ecol ; 81(2): 410-424, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32894355

RESUMO

To predict the effects of nitrogen deposition on nitrogen-mineralizing enzyme activity and soil microbial community structure in artificial temperate forests in northern China, we studied the soil properties, nitrogen-mineralizing enzyme activity, and microbial community structure in the soil of a Korean pine plantation in which different concentrations (0, 20, 40, 80 kg N ha-1 year-1) of ammonium nitrate were applied for 5 consecutive years. The results showed that nitrogen addition at different concentrations did not significantly affect the soil pH. High nitrogen addition (80 kg N ha-1 year-1) significantly increased the soil organic matter, ammonium nitrogen, and nitrate nitrogen content in the Korean pine plantation, and ammonium nitrogen was the key factor that influenced the soil fungal community structure. The urease activity under the moderate nitrogen addition treatment (40 kg N ha-1 year-1) was significantly lower than that under the control (0 kg N ha-1 year-1), and the protease activity in the three treatments was also significantly lower than that in the control. There was no significant correlation between microbial community structure and the four mineralizing enzymes. After nitrogen addition at different concentrations, the Simpson and Shannon indexes of soil bacteria decreased significantly under low nitrogen addition (20 kg N ha-1 year-1), but the α-diversity index of soil fungi did not show significant differences under nitrogen addition. The microbial community composition was significantly changed by the different treatments. PLS-DA analysis showed that Tardiphaga was an important genus that made the greatest contribution to the differences in bacterial community composition among treatments, as was Taeniolella for fungal community composition. The low level of nitrogen addition inhibited nitrogen mineralization in the Korean pine plantation by reducing the relative abundances of Nitrosomonadaceae and Betaproteobacteriales and by reducing the abundances of symbiotrophic fungi. Berkelbacteria and Polyporales were bacteria and fungi, respectively, that changed significantly under the high nitrogen addition treatment (80 kg N ha-1 year-1). This study provides more data to support predictions of the changes in nitrogen-mineralizing enzyme activity and microbial community structure in artificial temperate forest soils in response to increased nitrogen deposition.


Assuntos
Microbiota , Nitrogênio/metabolismo , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , China , Florestas , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Nitratos/análise , Nitratos/metabolismo , Nitrogênio/análise , Peptídeo Hidrolases/metabolismo , Pinus/microbiologia , Solo/química , Urease/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...