Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.599
Filtrar
1.
Chemosphere ; 363: 142953, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089337

RESUMO

In this study, we have utilized theoretical calculations to predict the reaction active sites of naproxen when reacting with radicals and to further study the thermodynamics and kinetics of the reactions with ·OH and SO4-·. The evidence, derived from the average local ionization energy and electrostatic potential, points to the naphthalene ring as the preferred site of attack, especially for the C2, C6, C9, and C10 sites. The changes in Gibbs free energy and enthalpy of the reactions initiated by ·OH and SO4-· ranged between -19.6 kcal/mol - 26.3 kcal/mol and -22.3 kcal/mol -18.5 kcal/mol, respectively. More in-depth investigation revealed that RA2 pathway for ·OH exhibited the lowest free energy of activation, suggesting this reaction is more inclined to proceed. The second-order rate constant results indicate the ·OH attacking reaction is faster than reactions initiated by SO4·-, yet controlled by diffusion. The consistency between theoretical findings and experimental data underscores the validity of this computational method for our study.

2.
Intensive Care Med ; 50(8): 1298-1309, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39088076

RESUMO

PURPOSE: Awake prone positioning has been reported to reduce endotracheal intubation in patients with coronavirus disease 2019 (COVID-19)-related acute hypoxemic respiratory failure (AHRF). However, it is still unclear whether using the awake prone positioning for longer periods can further improve outcomes. METHODS: In this randomized, open-label clinical trial conducted at 12 hospitals in China, non-intubated patients with COVID-19-related AHRF were randomly assigned to prolonged awake prone positioning (target > 12 h daily for 7 days) or standard care with a shorter period of awake prone positioning. The primary outcome was endotracheal intubation within 28 days after randomization. The key secondary outcomes included mortality and adverse events. RESULTS: In total, 409 patients were enrolled and randomly assigned to prolonged awake prone positioning (n = 205) or standard care (n = 204). In the first 7 days after randomization, the median duration of prone positioning was 12 h/d (interquartile range [IQR] 12-14 h/d) in the prolonged awake prone positioning group vs. 5 h/d (IQR 2-8 h/d) in the standard care group. In the intention-to-treat analysis, intubation occurred in 35 (17%) patients assigned to prolonged awake prone positioning and in 56 (27%) patients assigned to standard care (relative risk 0.62 [95% confidence interval (CI) 0.42-0.9]). The hazard ratio (HR) for intubation was 0.56 (0.37-0.86), and for mortality was 0.63 (0.42-0.96) for prolonged awake prone positioning versus standard care, within 28 days. The incidence of pre-specified adverse events was low and similar in both groups. CONCLUSION: Prolonged awake prone positioning of patients with COVID-19-related AHRF reduces the intubation rate without significant harm. These results support prolonged awake prone positioning of patients with COVID-19-related AHRF.


Assuntos
COVID-19 , Intubação Intratraqueal , Posicionamento do Paciente , Insuficiência Respiratória , Humanos , COVID-19/complicações , COVID-19/terapia , Decúbito Ventral , Masculino , Feminino , Pessoa de Meia-Idade , Posicionamento do Paciente/métodos , Intubação Intratraqueal/métodos , Intubação Intratraqueal/estatística & dados numéricos , Idoso , Insuficiência Respiratória/terapia , Insuficiência Respiratória/etiologia , Vigília , China/epidemiologia , Fatores de Tempo , SARS-CoV-2
3.
J Colloid Interface Sci ; 675: 52-63, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38964124

RESUMO

Construction of hierarchical architecture with suitable band alignment for graphitic carbon nitride (g-C3N4) played a pivotal role in enhancing the efficiency of photocatalysts. In this study, a novel attapulgite-intercalated g-C3N4/ZnIn2S4 nanocomposite material (ZIS/CN/ATP, abbreviated as ZCA) was successfully synthesized using the freeze-drying technique, thermal polymerization, and a simple low-temperature hydrothermal method. Attapulgite (ATP) was intercalated into g-C3N4 to effectively regulate its interlayer structure. The results reveal a substantial enlargement of its internal space, thereby facilitating the provision of additional active sites for improved dispersibility of ZnIn2S4. Notably, the optimized photocatalyst, comprising a mass ratio of ATP, g-C3N4, and ZnIn2S4 at 1:1:2.5 respectively, achieves an outstanding hydrogen evolution rate of 3906.15 µmol g-1h-1, without the need for a Pt co-catalyst. This rate surpasses that of pristine g-C3N4 by a factor of 475 and ZnIn2S4 by a factor of 5, representing a significant improvement in performance. This significant enhancement can be primarily attributed to the higher specific surface area, richer active sites, broadened light response range, and efficient interfacial charge transfer channels of the ZCA composite photocatalyst. Furthermore, the Z-scheme photocatalytic mechanism for the sandwich-like layered structure heterojunction was thoroughly investigated using diverse characterization techniques. This work offers new insights for enhancing photocatalytic performance through the expanded utilization of natural minerals, paving the way for future advancements in this field.

4.
Prog Lipid Res ; 95: 101289, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986846

RESUMO

Atherosclerosis is a causative factor associated with cardiovascular disease (CVD). Over the past few decades, extensive research has been carried out on the relationship between the n-6/n-3 fatty acid ratio of ingested lipids and the progression of atherosclerosis. However, there are still many uncertainties regarding the precise nature of this relationship, which has led to challenges in providing sound dietary advice to the general public. There is therefore a pressing need to review our current understanding of the relationship between the dietary n-6/n-3 fatty acid ratio and atherosclerosis, and to summarize the underlying factors contributing to the current uncertainties. Initially, this article reviews the association between the n-6/n-3 fatty acid ratio and CVDs in different countries. A summary of the current understanding of the molecular mechanisms of n-6/n-3 fatty acid ratio on atherosclerosis is then given, including inflammatory responses, lipid metabolism, low-density lipoprotein cholesterol oxidation, and vascular function. Possible reasons behind the current controversies on the relationship between the n-6/n-3 fatty acid ratio and atherosclerosis are then provided, including the precise molecular structures of the fatty acids, diet-gene interactions, the role of fat-soluble phytochemicals, and the impact of other nutritional factors. An important objective of this article is to highlight areas where further research is needed to clarify the role of n-6/n-3 fatty acid ratio on atherosclerosis.

5.
J Control Release ; 373: 105-116, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992622

RESUMO

Nanomedicines hold promise for the treatment of various diseases. However, treating cancer metastasis remains highly challenging. In this study, we synthesized gold nanorods (AuNRs) containing (α-GC), an immune stimulator, for the treatment of primary cancer, metastasis, and recurrence of the cancer. Therefore, the AuNR were coated with lipid bilayers loaded with α-GC (α-LA). Upon irradiation with 808 nm light, α-LA showed a temperature increase. Intra-tumoral injection of α-LA in mice and local irradiation of the 4T1 breast cancer tumor effectively eliminated tumor growth. We found that the presence of α-GC in α-LA activated dendritic cells and T cells in the spleen, which completely blocked the development of lung metastasis. In mice injected with α-LA for primary breast cancer treatment, we observed antigen-specific T cell responses and increased cytotoxicity against 4T1 cells. We conclude that α-LA is promising for the treatment of both primary breast cancer and its metastasis.

6.
J Colloid Interface Sci ; 675: 806-814, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39002231

RESUMO

Metal-organic compounds have attracted significant attention for lithium-ion battery (LIB) anodes. However, their practical application is severely hindered by the poor structural stability and sluggish Li+ reaction kinetics. Herein, we proposed a new type of metal-organic compound, metal alkoxides, for high-performance LIBs. A series of metal-alkoxide/graphene composites with different transition metal centers and alkoxide anions are prepared to investigate the structural stability, Li-storage ability, and Li+ diffusion kinetics. The results reveal that the metal centers and alkoxide anions have significant influence on the structural stability, molar mass, and electronic structures, which are highly related to the Li-storage performance. Among them, Co-EG/rGO (EG represents the ethylene glycol anion) delivers the best performance involving high specific capacity (975 mAh g-1 at 0.2 A g-1), excellent rate capability (400.8 mAh g-1 at 10 A g-1), and stable cycling performance (86.8 % capacity retention after 600 cycles) due to its stable structure, smaller molar mass, and favorable electronic structure. Moreover, the Li-storage mechanism and solid electrolyte interphase (SEI) evolution of the Co-EG/rGO electrode are studied in detail through multiple ex-situ/in-situ characterizations. This work provides a new type of metal alkoxide anode material for high-rate and long-life LIBs toward practical energy applications.

7.
Adv Mater ; : e2406794, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032124

RESUMO

The large size of K+ ions (1.38 Å) sets a challenge in achieving high kinetics and long lifespan of potassium storage devices. Here, a fibrous ZrO2 membrane is utilized as a reactive template to construct a dual-carbon K-ion capacitor. Unlike graphite, ZrO2-catalyzed graphitic carbon presents a relatively disordered layer arrangement with an expanded interlayer spacing of 0.378 nm to accommodate K+ insertion/extraction. Pyridine-derived nitrogen sites can locally store K-ions without disrupting the formation of stage-1 graphite intercalation compounds (GICs). Consequently, N-doped hollow graphitic carbon fiber achieves a K+-storage capacity (primarily below 1 V), which is 1.5 time that of commercial graphite. Potassium-ion hybrid capacitors are assembled using the hollow carbon fiber electrodes and the ZrO2 nanofiber membrane as the separator. The capacitor exhibits a high power of 40 000 W kg-1, full charge in 8.5 s, 93% capacity retention after 5000 cycles at 2 A g-1, and a low self-discharge rate of 8.6 mV h-1. The scalability and high performance of the lattice-expanded tubular carbon electrodes underscores may advance the practical potassium-ion capacitors.

8.
Dalton Trans ; 53(29): 12291-12300, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38984478

RESUMO

Photocatalytic ammonia production holds immense promise as an environmentally sustainable approach to nitrogen fixation. In this study, In2O3/In2S3-ZnCdS ternary heterostructures were successfully constructed through an innovative in situ anion exchange process, coupled with a low-temperature hydrothermal method for ZnCdS (ZCS) incorporation. The resulting In2O3/In2S3-ZCS photocatalyst was proved to be highly efficient in converting N2 to NH3 under mild conditions, eliminating the need for sacrificial agents or precious metal catalysts. Notably, the NH4+ yield of In2O3/In2S3-0.5ZCS reached a significant level of 71.2 µmol g-1 h-1, which was 10.47 times higher than that of In2O3 (6.8 µmol g-1 h-1) and 3.22 times higher than that of In2O3/In2S3 (22.1 µmol g-1 h-1). This outstanding performance can be attributed to the ternary heterojunction configuration, which significantly extends the lifetime of photogenerated carriers and enhances the spatial separation of electrons and holes. The synergistic interplay between CdZnS, In2S3, and In2O3 in the heterojunction facilitates electron transport, thereby boosting the rate of the photocatalytic nitrogen fixation reaction. Our study not only validates the efficacy of ternary heterojunctions in photocatalytic nitrogen fixation but also offers valuable insights for the design and construction of such catalysts for future applications.

9.
ACS Appl Mater Interfaces ; 16(28): 36343-36353, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38965043

RESUMO

Solid oxide electrolysis cells (SOECs) show significant promise in converting CO2 to valuable fuels and chemicals, yet exploiting efficient electrode materials poses a great challenge. Perovskite oxides, known for their stability as SOEC electrodes, require improvements in electrocatalytic activity and conductivity. Herein, vanadium(V) cation is newly introduced into the B-site of Sr2Fe1.5Mo0.5O6-δ perovskite to promote its electrochemical performance. The substitution of variable valence V5+ for Mo6+ along with the creation of oxygen vacancies contribute to improved electronic conductivity and enhanced electrocatalytic activity for CO2 reduction. Notably, the Sr2Fe1.5Mo0.4V0.1O6-δ based symmetrical SOEC achieves a current density of 1.56 A cm-2 at 1.5 V and 800 °C, maintaining outstanding durability over 300 h. Theoretical analysis unveils that V-doping facilitates the formation of oxygen vacancies, resulting in high intrinsic electrocatalytic activity for CO2 reduction. These findings present a viable and facile strategy for advancing electrocatalysts in CO2 conversion technologies.

10.
J Colloid Interface Sci ; 677(Pt A): 90-98, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39083895

RESUMO

The recombination of photogenerated electron-hole pairs of the photoanode seriously impairs the application of bismuth vanadate (BiVO4) in photoelectrochemical water splitting. To address this issue, we prepared a Yb:BiVO4/Co3O4/FeOOH composite photoanode by employing drop-casting and soaking methods to attach Co3O4/FeOOH cocatalysts to the surface of ytterbium-doped BiVO4. The prepared Yb:BiVO4/Co3O4/FeOOH photoanode demonstrates a high photocurrent density of 4.89 mA cm-2 at 1.23 V versus the reversible hydrogen electrode (RHE), which is 5.1 times that of bare BiVO4 (0.95 mA cm-2). Detailed characterization and testing demonstrated that Yb doping narrows the band gap and significantly enhances the carrier density. Furthermore, Co3O4 serves as a hole transfer layer to expedite hole migration and diminish recombination, while FeOOH offers additional active sites and minimizes surface trap states, thus boosting stability. The synergistic effects of Yb doping and Co3O4/FeOOH cocatalyst significantly improved the reaction kinetics and overall performance of PEC water oxidation. This work provides a strategy for designing efficient photoanodes for PEC water oxidation.

11.
Front Cardiovasc Med ; 11: 1396889, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081365

RESUMO

Background: Acute kidney injury (AKI) represents a significant complication following cardiac surgery, associated with increased morbidity and mortality rates. Despite its clinical importance, there is a lack of universally applicable and reliable methods for the early identification and diagnosis of AKI. This study aimed to examine the incidence of AKI after cardiac surgery, identify associated risk factors, and evaluate the prognosis of patients with AKI. Method: This retrospective study included adult patients who underwent cardiac surgery at Changhai Hospital between January 7, 2021, and December 31, 2021. AKI was defined according to the Kidney Disease: Improving Global Outcomes (KDIGO) criteria. Perioperative data were retrospectively obtained from electronic health records. Logistic regression analyses were used to identify independent risk factors for AKI. The 30-day survival was assessed using the Kaplan-Meier method, and differences between survival curves for different AKI severity levels were compared using the log-rank test. Results: Postoperative AKI occurred in 257 patients (29.6%), categorized as stage 1 (179 patients, 20.6%), stage 2 (39 patients, 4.5%), and stage 3 (39 patients, 4.5%). The key independent risk factors for AKI included increased mean platelet volume (MPV) and the volume of intraoperative cryoprecipitate transfusions. The 30-day mortality rate was 3.2%. Kaplan-Meier analysis showed a lower survival rate in the AKI group (89.1%) compared to the non-AKI group (100%, P < 0.001). Conclusion: AKI was notably prevalent following cardiac surgery in this study, significantly impacting survival rates. Notably, MPV and administration of cryoprecipitate may have new considerable predictive significance. Proactive identification and management of high-risk individuals are essential for reducing postoperative complications and mortality.

12.
Transl Psychiatry ; 14(1): 316, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085206

RESUMO

Machine Learning models trained from real-world data have demonstrated promise in predicting suicide attempts in adolescents. However, their transportability, namely the performance of a model trained on one dataset and applied to different data, is largely unknown, hindering the clinical adoption of these models. Here we developed different machine learning-based suicide prediction models based on real-world data collected in different contexts (inpatient, outpatient, and all encounters) with varying purposes (administrative claims and electronic health records), and compared their cross-data performance. The three datasets used were the All-Payer Claims Database in Connecticut, the Hospital Inpatient Discharge Database in Connecticut, and the Electronic Health Records data provided by the Kansas Health Information Network. We included 285,320 patients among whom we identified 3389 (1.2%) suicide attempters and 66% of the suicide attempters were female. Different machine learning models were evaluated on source datasets where models were trained and then applied to target datasets. More complex models, particularly deep long short-term memory neural network models, did not outperform simpler regularized logistic regression models in terms of both local and transported performance. Transported models exhibited varying performance, showing drops or even improvements compared to their source performance. While they can achieve satisfactory transported performance, they are usually upper-bounded by the best performance of locally developed models, and they can identify additional new cases in target data. Our study uncovers complex transportability patterns and could facilitate the development of suicide prediction models with better performance and generalizability.


Assuntos
Registros Eletrônicos de Saúde , Aprendizado de Máquina , Tentativa de Suicídio , Humanos , Feminino , Masculino , Adolescente , Tentativa de Suicídio/psicologia , Tentativa de Suicídio/estatística & dados numéricos , Connecticut , Estudos Longitudinais , Bases de Dados Factuais , Suicídio/psicologia
13.
Huan Jing Ke Xue ; 45(7): 4361-4374, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022980

RESUMO

In order to systematically understand the urban environmental benefit improvement of municipal solid waste (MSW) classification, based on the disposal data of MSW before and after the MSW classification in Suzhou from 2017 to 2021, the environmental impact potential (EIP) of the MSW collection-transportation-disposal process was calculated, and the environmental benefits of the MSW integrated management in Suzhou to 2035 were predicted. After the MSW classification in Suzhou at the end of 2019, the EIP (in terms of PET2000, the same below) of the per unit weight of MSW was reduced by 18.38% from 2.34×10-13 t-1 in 2017 to 1.91×10-13 t-1 in 2021. The environmental benefits of the MSW integrated management could be improved by classification. Based on the Suzhou MSW removal and transportation situation in 2021, different classification and disposal scenarios were established to calculate. It was found that after the classification effect showed gradient improvement, and the disposal capacity matched accordingly, the environmental benefits of MSW were further improved. Under the planning disposal capacity scenario of "zero waste to landfill", the EIP and the total carbon emissions of per unit weight of MSW should be reduced by 23.96% and 30.73%, respectively, compared with the actual situation in 2021. Based on the linear model of population and economic development level of Suzhou, it is expected that the annual production of MSW in Suzhou will be increased to 6.965 million tons in 2035. Under the background of continuous improvement of MSW classification and continuous optimization of city appearance and environment in Suzhou, based on the status quo of terminal disposal capacity in Suzhou, the EIP of per unit weight of MSW after improving the efficiency of classification by 2035 was predicted to be 1.54×10-13 t-1, the total EIP would be 1.05×10-6, and the total carbon emissions would increase to 3.80 million tons. Under the ideal scenario of expanding the scale of waste disposal, "zero landfill" of raw MSW, and full resource utilization of food waste, the EIP of per unit weight of MSW in 2035 was predicted to be 1.28×10-13 t-1, and the total EIP and the total carbon emissions would be 8.69×10-7 and 3.23 million tons, respectively, which was approximately 5.65% and 1.23% less than the actual scenario in 2021, respectively. The EIP and carbon emissions of MSW integrated management could be controlled better by the coordinated promotion of classified collection and transportation and quality disposal.

14.
Front Cell Infect Microbiol ; 14: 1392376, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903943

RESUMO

Background: The gut microbiota plays a vital role in the development of sepsis and in protecting against pneumonia. Previous studies have demonstrated the existence of the gut-lung axis and the interaction between the gut and the lung, which is related to the prognosis of critically ill patients; however, most of these studies focused on chronic lung diseases and influenza virus infections. The purpose of this study was to investigate the effect of faecal microbiota transplantation (FMT) on Klebsiella pneumoniae-related pulmonary infection via the gut-lung axis and to compare the effects of FMT with those of traditional antibiotics to identify new therapeutic strategies. Methods: We divided the mice into six groups: the blank control (PBS), pneumonia-derived sepsis (KP), pneumonia-derived sepsis + antibiotic (KP + PIP), pneumonia-derived sepsis + faecal microbiota transplantation(KP + FMT), antibiotic treatment control (KP+PIP+PBS), and pneumonia-derived sepsis+ antibiotic + faecal microbiota transplantation (KP + PIP + FMT) groups to compare the survival of mice, lung injury, inflammation response, airway barrier function and the intestinal flora, metabolites and drug resistance genes in each group. Results: Alterations in specific intestinal flora can occur in the gut of patients with pneumonia-derived sepsis caused by Klebsiella pneumoniae. Compared with those in the faecal microbiota transplantation group, the antibiotic treatment group had lower levels of proinflammatory factors and higher levels of anti-inflammatory factors but less amelioration of lung pathology and improvement of airway epithelial barrier function. Additionally, the increase in opportunistic pathogens and drug resistance-related genes in the gut of mice was accompanied by decreased production of favourable fatty acids such as acetic acid, propionic acid, butyric acid, decanoic acid, and secondary bile acids such as chenodeoxycholic acid 3-sulfate, isodeoxycholic acid, taurodeoxycholic acid, and 3-dehydrocholic acid; the levels of these metabolites were restored by faecal microbiota transplantation. Faecal microbiota transplantation after antibiotic treatment can gradually ameliorate gut microbiota disorder caused by antibiotic treatment and reduce the number of drug resistance genes induced by antibiotics. Conclusion: In contrast to direct antibiotic treatment, faecal microbiota transplantation improves the prognosis of mice with pneumonia-derived sepsis caused by Klebsiella pneumoniae by improving the structure of the intestinal flora and increasing the level of beneficial metabolites, fatty acids and secondary bile acids, thereby reducing systemic inflammation, repairing the barrier function of alveolar epithelial cells, and alleviating pathological damage to the lungs. The combination of antibiotics with faecal microbiota transplantation significantly alleviates intestinal microbiota disorder, reduces the selection for drug resistance genes caused by antibiotics, and mitigates lung lesions; these effects are superior to those following antibiotic monotherapy.


Assuntos
Antibacterianos , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Infecções por Klebsiella , Klebsiella pneumoniae , Pulmão , Sepse , Animais , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/terapia , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pulmão/microbiologia , Pulmão/patologia , Sepse/microbiologia , Sepse/terapia , Prognóstico , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL
15.
Pest Manag Sci ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924229

RESUMO

BACKGROUND: The citrus red mite, Panonychus citri is a serious pest of the citrus industry and has developed resistance to many acaricides. Broflanilide is a novel meta-diamide insecticide that binds to a new site on the γ -aminobutyric acid receptor with high potency against pests. However, little information has been reported about its effect on the citrus red mite. RESULTS: Broflanilide exhibited higher toxicity to female adults and eggs of a laboratory strain of P. citri The median lethal concentration (LC50), 9.769 mg/L and 4.576 mg/L, respectively) than other commonly used acaricides and was also toxic to two P. citri field strains. Broflanilide treatment with LC10, LC20, and LC30 significantly decreased the fecundity and longevity of female adults of F0 P. citri compared with the control. The duration of larva, protonymph, deutonymph and adult, and total life span in the F1 generation were significantly reduced after treatment of F0 with broflanilide. Population parameters, including the intrinsic rate of increase (r) and finite rate of increase (λ), were significantly increased, and the mean generation time (T) of F1 progeny was significantly reduced in the LC20 treatment. The predicted population size of F1 increased when parental female adults were treated with sublethal concentrations. CONCLUSION: Broflanilide had high acaricidal activity toward P. citri, and exposure to a sublethal concentration significantly inhibited the population growth of F0. The transgenerational hormesis effect is likely to cause population expansion of F1. More attention should be paid when broflanilide is applied to control P. citri in citrus orchards. © 2024 Society of Chemical Industry.

16.
Cell Signal ; 121: 111262, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901722

RESUMO

Many solid tumors frequently overexpress Non-SMC Condensin I Complex Subunit H (NCAPH), and new studies suggest that NCAPH may be a target gene for clinical cancer therapy. Numerous investigations have shown that a variety of transcription factors, including as MYBL2, FOXP3, GATA3, and OTC1, can stimulate the transcription of NCAPH. Additionally, NCAPH stimulates many oncogenic signaling pathways, such as ß-Catenin/PD-L1, PI3K/AKT/SGK3, MEK/ERK, AURKB/AKT/mTOR, PI3K/PDK1/AKT, and Chk1/Chk2. Tumor immune microenvironment modification and tumor growth, apoptosis, metastasis, stemness, and treatment resistance all depend on these signals. NCAPH has the ability to form complexes with other proteins that are involved in glycolysis, DNA damage repair, and chromatin remodeling. This review indicates that NCAPH expression in most malignant tumors is associated with poor prognosis and low recurrence-free survival.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/terapia , Neoplasias/patologia , Transdução de Sinais , Proteínas de Ciclo Celular/metabolismo , Animais , Microambiente Tumoral
17.
Adv Mater ; : e2401052, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923689

RESUMO

Nickel-rich layered oxide cathode material LiNixCoyMnzO2 (NCM) has emerged as a promising candidate for next-generation lithium-ion batteries (LIBs). These cathode materials possess high theoretical specific capacity, fast electron/ion transfer rate, and high output voltage. However, their potential is impeded by interface instability, irreversible phase transition, and the resultant significant capacity loss, limiting their practical application in LIBs. In this work, a simple and scalable approach is proposed to prepare gradient cathode material (M-NCM) with excellent structural stability and rate performance. Taking advantage of the strong coordination of Ni2+ with ammonia and the reduction reaction of KMnO4, the elemental compositions of the Ni-rich cathode are reasonably adjusted. The resulted gradient compositional design plays a crucial role in stabilizing the crystal structure, which effectively mitigates Li/Ni mixing and suppresses unwanted surficial parasitic reactions. As a result, the M-NCM cathode maintains 98.6% capacity after 200 cycles, and a rapid charging ability of 107.5 mAh g-1 at 15 C. Furthermore, a 1.2 Ah pouch cell configurated with graphite anode demonstrates a lifespan of over 500 cycles with only 8% capacity loss. This work provides a simple and scalable approach for the in situ construction of gradient cathode materials via cooperative coordination and deposition reactions.

18.
Eur J Pharmacol ; 977: 176721, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38851561

RESUMO

Underactive bladder (UAB), characterized by a complex set of symptoms with few treatment options, can significantly reduce the quality of life of affected people. UAB is characterized by hyperplasia and fibrosis of the bladder wall as well as decreased bladder compliance. Pirfenidone is a powerful anti-fibrotic agent that inhibits the progression of fibrosis in people with idiopathic pulmonary fibrosis. In the current study, we evaluated the efficacy of pirfenidone in the treatment of bladder fibrosis in a UAB rat model. UAB was induced by crushing damage to nerve bundles in the major pelvic ganglion. Forty-two days after surgery, 1 mL distilled water containing pirfenidone (100, 300, or 500 mg/kg) was orally administered once every 2 days for a total of 10 times for 20 days to the rats in the pirfenidone-treated groups. Crushing damage to the nerve bundles caused voiding dysfunction, resulting in increased bladder weight and the level of fibrous related factors in the bladder, leading to UAB symptoms. Pirfenidone treatment improved urinary function, increased bladder weight and suppressed the expression of fibrosis factors. The results of this experiment suggest that pirfenidone can be used to ameliorate difficult-to-treat urological conditions such as bladder fibrosis. Therefore, pirfenidone treatment can be considered an option to improve voiding function in patient with incurable UAB.


Assuntos
Fibrose , Piridonas , Ratos Sprague-Dawley , Bexiga Inativa , Bexiga Urinária , Micção , Animais , Piridonas/farmacologia , Piridonas/uso terapêutico , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/patologia , Bexiga Urinária/fisiopatologia , Ratos , Micção/efeitos dos fármacos , Bexiga Inativa/tratamento farmacológico , Bexiga Inativa/fisiopatologia , Bexiga Inativa/etiologia , Modelos Animais de Doenças , Feminino , Masculino
19.
J Hazard Mater ; 474: 134778, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843637

RESUMO

Short-chained perfluoroalkyl acids (PFAAs, CnF2n+1-R, n ≤ 6) have merged as global concerns due to their extensive application and considerable toxicity. However, long-chained PFAAs (n ≥ 7) featured with high persistence are still ubiquitously observed in aquatic environment. To understand the uptake behavior of short-chained PFAAs in aquatic macrophytes, the uptake kinetics, bioconcentration, and translocation of short-chained PFAAs (3 ≤n ≤ 6) in two typical free-floating macrophytes (Eichhornia crassipes and Ceratophyllum demersum) were investigated in the treatments with and without long-chained PFAAs (7 ≤n ≤ 11). Results showed that short-chained PFAAs can be readily accumulated in both E. crassipes and C. demersum, and the uptake of short-chained PFAAs fit the two-compartment kinetic model well (p < 0.05). In the treatments with long-chained PFAAs, significant concentration decreases of all concerned short-chained PFAAs in E. crassipes and PFAAs with n ≤ 5 in C. demersum were observed. Long-chained PFAAs could hinder the uptake rates, bioconcentration factors, and translocation factors of most short-chained PFAAs in free-floating macrophytes (p < 0.01). Significant correlations between bioconcentration factors and perfluoroalkyl chain length were only observed when long-chained PFAAs were considered (p < 0.01). Our results underlined that the effects of long-chained PFAAs should be taken into consideration in understanding the uptake and bioaccumulation behaviors of short-chained PFAAs.


Assuntos
Eichhornia , Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/metabolismo , Eichhornia/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Bioacumulação
20.
Huan Jing Ke Xue ; 45(6): 3605-3613, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897780

RESUMO

It is of great significance for the conservation of biodiversity in farmland ecosystems to study the diversity, structure, functions, and biogeographical distribution of soil microbes in farmland and their influencing factors. High-throughput sequencing technology was used to analyze the distribution characteristics of soil bacterial diversity, community structure, and metabolic function along elevation and their responses to soil physicochemical properties in farmland in the loess hilly areas of Ningxia. The results showed that:① The Alpha diversity index of soil bacterial was significantly negatively correlated with elevation (P < 0.05) and showed a trend of decreasing and then slightly increasing along the elevation. ② Seven phyla, including Proteobacteria, Actinobacteria, and Acidobacteria, were the dominant groups, and five of them showed highly significant differences between altitudes (P < 0.01). ③ At the secondary classification level, there were 36 metabolic functions of bacteria, including membrane transport, carbohydrate metabolism, and amino acid metabolism, of which 22 showed significant differences, and 12 showed extremely significant differences among different altitudes. ④ Pearson correlation analysis showed that soil water content, bulk density, pH, and carbon-nitrogen ratio had the most significant effects on bacterial Alpha diversity, whereas soil nutrients such as total organic carbon, total nitrogen, and total phosphorus had significant effects on bacterial Beta diversity. ⑤ Mantel test analysis showed that the soil water content, total organic carbon, and carbon-nitrogen ratio affected bacterial community structure at the phylum level, and soil pH, total organic carbon, total nitrogen, total phosphorus, and carbon-nitrogen ratio were significantly correlated with bacterial metabolic function. Variance partitioning analysis showed that soil water content had the highest explanation for the community structure of soil bacteria, whereas soil pH had the highest explanation for metabolic function. In conclusion, soil water content and pH were the main factors affecting the diversity, community composition, and metabolic function of soil bacteria in farmland in the loess hilly region of Ningxia.


Assuntos
Altitude , Bactérias , Microbiologia do Solo , China , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Solo/química , Biodiversidade , Produtos Agrícolas/crescimento & desenvolvimento , Proteobactérias/isolamento & purificação , Proteobactérias/crescimento & desenvolvimento , Nitrogênio/análise , Actinobacteria/crescimento & desenvolvimento , Ecossistema , Acidobacteria/crescimento & desenvolvimento , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Fósforo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...