RESUMO
Low-temperature fuel cells have great application potential in electric vehicles and portable electronic devices, which need advanced electrocatalysts. Controlling the composition and morphology of electrocatalysts can effectively improve their catalytic performance. In this work, a Rh metallene (Rhlene)-supported Pt nanoparticle (Pt/Rhlene) electrocatalyst is successfully synthesized by a simple chemical reduction method, in which ultra-small Pt nanoparticles are uniformly attached to the Rhlene surface due to the high surface area of Rhlene. Pt/Rhlene reveals a 3.60-fold Pt-mass activity enhancement for the ethylene glycol oxidation reaction in alkaline solution compared with commercial Pt black, and maintains high stability and excellent poisoning-tolerance during electrocatalysis, owing to the specific physical/chemical properties of Rhlene. The superior electrocatalytic performance of Pt/Rhlene may open an avenue to synthesize other metallene-supported noble metal nanoparticle hybrids for various electrocatalytic applications.
RESUMO
The nitrate electroreduction reaction (NO3--ERR) is an efficient and green approach for nitrate remediation, which requires a highly active and selective electrocatalyst. In this work, porous and amorphous cobalt phosphide nanoshuttles (CoP PANSs) are successfully synthesized by using Mg2+ ion-doped calcium carbonate nanoshuttles (Mg-CaCO3 NSs) as the initial reaction precursor via precipitation transformation and a high-temperature phosphidation strategy. Various physical characterizations show that CoP PANSs have porous architecture, amorphous crystal structure, and big surface area. Electrochemical measurements reveal for the first time that CoP PANSs have outstanding electroactivity for NO3--ERR in a neutral electrolyte. At an applied potential of -0.5 V vs reversible hydrogen electrode, CoP PANSs can achieve a high Faraday efficiency (94.24 ± 2.8%) and high yield rate (19.28 ± 0.53 mg h-1 mgcat-1) for ammonia production, which exceeds most reported values at various electrocatalysts for NO3--ERR. Thus, the present result indicates that cobalt phosphide nanomaterials have promising application for NO3--ERR.
RESUMO
The reactive and stable catalysts for the oxygen reduction reaction are highly desirable for low temperature fuel cells. The commercial oxygen reduction reaction electrocatalysts generally reply on noble metal based nanomaterials, which suffer from inherent cost and selectivity issues. At present, it still remains challenge for designing efficient non-noble metal-based oxygen reduction reaction electrocatalysts. Herein, we successfully synthesize Co nanoparticles supported on three-dimensionally N-doped holey graphene aerogels hybrids by the high-temperature calcination of the graphene aerogels-polyallylamine-CoII hybrids. The component optimized hybrids show the excellent electrocatalytic activity for oxygen reduction reaction in alkaline media, which is comparable to commercial Pt/C electrocatalyst. Meanwhile, the hybrids also show eminent tolerance for CO and methanol, attributing to their excellent oxygen reduction reaction selectivity. The three-dimensionally interconnected structure of graphene aerogels, N-doping, uniform dispersion and high crystallinity of Co nanoparticles, and holey structure of graphene contribute to the striking oxygen reduction reaction activity of hybrids.
RESUMO
Developing robust and inexpensive non-noble metal based anode electrocatalysts is highly desirable for alkaline direct methanol fuel cells (ADMFCs). Herein, we successfully develop a facile self-template synthetic strategy for gram-grade porous NiO nanotubes (NTs) by pyrolyzing a nanorod-like Ni-dimethylglyoxime complex. The pyrolysis temperature highly correlates with the morphology and crystallinity of NiO NTs. The optimal NiO NTs exhibit a large electrochemically active surface area, a fast catalytic kinetics, and a small charge transfer resistance, which induce an outstanding electrocatalytic activity for the methanol oxidation reaction (MOR). Compared with conventional NiO nanoparticles, NiO NTs achieve a 11.5-fold increase in mass activity at 1.5 V for the MOR due to nanotubal morphology and abundant non-vacancy defects on the NiO NT surface. Moreover, NiO NTs have a higher electrocatalytic activity for the intermediates of the MOR (such as formaldehyde and formate) than conventional NiO nanoparticles, which also contribute to MOR activity enhancement. Given the facile synthesis and enhanced electrocatalytic performance, NiO NTs may be promising anode electrocatalysts for ADMFCs.
RESUMO
The hollow noble metal nanostructures have attracted wide attention in catalysis/electrocatalysis. Here a two-step procedure for constructing hollow Rh nanospheres (Rh H-NSs) with clean surface is described. By selectively removing the surfactant and Au core of Au-core@Rh-shell nanostructures (Au@Rh NSs), the surface-cleaned Rh H-NSs are obtained, which contain abundant porous channels and large specific surface area. The as-prepared Rh H-NSs exhibit enhanced inherent activity for the methanol oxidation reaction (MOR) compared to state-of-the-art Pt nanoparticles in alkaline media. Further electrochemical experiments show that Rh H-NSs also have high activity for the electrooxidation of formaldehyde and formate (intermediate species in the course of the MOR) in alkaline media. Unfortunately, Rh H-NSs have low electrocatalytic activity for the ethanol and 1-propanol oxidation reactions in alkaline media. All electrochemical results indicate that the order of electrocatalytic activity of Rh H-NSs for alcohol oxidation reaction is methanol (C1 ) > ethanol (C2 ) > 1-propanol (C3 ). This work highlights the synthesis route of Rh hollow nanostructures, and indicates the promising application of Rh nanostructures in alkaline direct methanol fuel cells.
RESUMO
The present paper analyzes the interior rust that occurred in bronze alloy sample from 24 pieces of Early Qin bronze wares. Firstly, samples were processed by grinding, polishing and ultrasonic cleaning-to make a mirror surface. Then, a confocal micro-Raman spectrometer was employed to carry out spectroscopic study on the inclusions in samples. The conclusion indicated that corrosive phases are PbCO3 , PbO and Cu2O, which are common rusting production on bronze alloy. The light-colored circular or massive irregular areas in metallographic structure of samples are proved as Cu2O, showing that bronze wares are not only easy to be covered with red Cu2O rusting layer, but also their alloy is easy to be eroded by atomic oxygen. In other words, the rust Cu2O takes place in both the interior and exterior parts of the bronze alloy. In addition, Raman spectrum analysis shows that the dark grey materials are lead corrosive products--PbCO3 and PbO, showing the corroding process of lead element as Pb -->PbO-->PbCO3. In the texture of cast state of bronze alloy, lead is usually distributed as independent particles between the different alloy phases. The lead particles in bronze alloy would have oxidation reaction and generate PbO when buried in the soil, and then have chemical reaction with CO3(2-) dissolved in the underground water to generate PbCO3, which is a rather stable lead corrosive production. A conclusion can be drawn that the external corrosive factors (water, dissolved oxygen and carbonate, etc) can enter the bronze ware interior through the passageway between different phases and make the alloy to corrode gradually.
RESUMO
XRD and XRF were used to identify several brass coins of Qing dynasty collected in the Ezhou Museum and excavated from Ezhou of Hubei province. The reality of the coins contains 36.53%-37.75% of Zn, 54.12%-59.04% of Cu and 3.51%-7.56% of Pb, and the ration of the alloy is steady and scientific, indicating that the technic of the alloy of brass was quite perfect in the mid to late of Qing dynasty. Zn3Cu2 (OH)6 (CO3)2 was found in the corrosion for the first time, and CuO, ZnO, Fe2O3 and CuCl were found too. The high content of Cl-, around the local condition (including the polluted environment), may be the main reason for those brass coins to be eroded seriously. These findings provide some reference for collecting and protecting coins.