Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17027, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37946660

RESUMO

Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long-term effects of grazing exclusion on the microbial communities and nutrient dynamics within soil aggregates remain unclear. We conducted a 36-year exclusion experiment to investigate how grazing exclusion affects the soil microbial community and the associated soil functions within soil aggregates in a semiarid grassland. Long-term (36 years) grazing exclusion induced a shift in microbial communities, especially in the <2 mm aggregates, from high to low diversity compared to the grazing control. The reduced microbial diversity was accompanied by instability of fungal communities, extended distribution of fungal pathogens to >2 mm aggregates, and reduced carbon (C) sequestration potential thus revealing a negative impact of long-term GE. In contrast, 11-26 years of grazing exclusion greatly increased C sequestration and promoted nutrient cycling in soil aggregates and associated microbial functional genes. Moreover, the environmental characteristics of microhabitats (e.g., soil pH) altered the soil microbiome and strongly contributed to C sequestration. Our findings reveal new evidence from soil microbiology for optimizing grazing exclusion duration to maintain multiple belowground ecosystem functions, providing promising suggestions for climate-smart and resource-efficient grasslands.


Assuntos
Ecossistema , Microbiota , Solo/química , Pradaria , Herbivoria , Nitrogênio , Microbiologia do Solo , Carbono
2.
Chemosphere ; 287(Pt 3): 132288, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34555581

RESUMO

Biodegradable chelant (S,S)-N,N'-ethylenediaminedisuccinic acid (EDDS) has the more advantages of enhanced metal mobility, rapid degradation, environmental friendliness, and ammonium release. However, the risk of metal and/or nitrate residues and leaching within EDDS biodegradation remains as the bottleneck for the widespread application of EDDS-induced phytoremediation. This study aims to explore if the inoculation of plant growth-promoting rhizobacteria (PGPRs) can eliminate the risk associated with the short-term application of EDDS by investigating Cu phytoextraction and soil nitrate content. Results showed that EDDS application significantly increased the copper (Cu) concentration in shoots, soil total Cu, NH4+-N and NO3--N content, but decreased plant biomass. The inoculation of PGPRs in the soil showed a strong ability to increase plant biomass, Cu phytoextraction and soil NH4+-N content, and decrease soil Cu and NO3--N content. Moreover, bacterial dominant taxa were found to be the largest contributors to soil NH4+-N and NO3--N variation, and the abundance of denitrifying bacteria (Bacteroidetes and Stenotrophomonas) decreased in the treatment with PGPRs. The risk of residual Cu and nitrate leaching was reduced by the inoculation of PGPRs without significantly changing the stability of the bacterial community. These new findings indicate that the exogenous application of beneficial rhizobacteria can provide an effective strategy to reduce the risk in metal-contaminated soils of chelant-assisted phytoextraction.


Assuntos
Poluentes do Solo , Biodegradação Ambiental , Quelantes , Cobre/análise , Etilenodiaminas , Nitratos , Solo , Poluentes do Solo/análise , Succinatos
3.
Sci Total Environ ; 777: 146104, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33677288

RESUMO

Grazing prohibition is an effective measure in improving soil stability and ecological quality. However, only a limited number of studies have been published on the dominant factors that impact soil aggregate stability and their associated effects on nutrient distribution for different size soil aggregates under long-term grazing prohibition management. In this study, we investigated variation in soil aggregate stability and nutrient distribution characteristics in semiarid grassland sites under different grazing prohibition timeframes (0 years [GP0], 11 years [GP11], 26 years [GP26], and 36 years [GP36]). Results showed that organic carbon (C) and total nitrogen (TN) concentrations in soil aggregates decreased at GP11 before progressively increasing and reaching its highest value at GP36, and the total phosphorus (TP) concentration did not change significantly. Most nutrients accumulated in macroaggregates (> 0.25 mm) under grazing prohibition, and the nutrient stoichiometry in soil aggregates increased after 26 years. Compared to the control (GP0), the mean weight diameter (MWD) value of the soil stability index increased at GP11 (21.7%) and decreased at GP26 (18.9%). Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) also showed that the proportion of stable organic C-related functional groups (i.e., alkene-C and aromatic-C) in macroaggregates were higher at GP11 and GP36 than at GP26. Furthermore, principal component analysis (PCA), partial least squares path modeling (PLS-PM), and the relative importance of regressors all showed that glomalin-related soil proteins (GRSP) and nutrients indirectly improved aggregate stability in semiarid grassland through their influence on the GRSP accumulation potential and nutrient stoichiometry. Generally, after 26 years grazing prohibition had a positive effect on soil aggregate stability and nutrient accumulation in the semiarid grassland sites investigated for this study. Results from this study provide a theoretical basis to select appropriate grazing prohibition timeframes under grassland management initiatives to optimize ecological quality measures in semiarid regions.

4.
Environ Pollut ; 265(Pt A): 114744, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32806415

RESUMO

Being signaling molecules, nitric oxide (NO) and hydrogen sulfide (H2S) can mediate a wide range of physiological processes caused by plant metal toxicity. Moreover, legume-rhizobium symbiosis has gained increasing attention in mitigating heavy metal stress. However, systematic regulatory mechanisms used for the exogenous application of signaling molecules to alter the resistance of legume-rhizobium symbiosis under metal stress are currently unknown. In this study, we examined the exogenous effects of sodium nitroprusside (SNP) as an NO donor additive and sodium hydrosulfide (NaHS) as a H2S donor additive on the phytotoxicity and soil quality of alfalfa (Medicago sativa)-rhizobium symbiosis in lead/cadmium (Pb/Cd)-contaminated soils. Results showed that rhizobia inoculation markedly promoted alfalfa growth by increasing chlorophyll content, fresh weight, and plant height and biomass. Compared to the inoculated rhizobia treatment alone, the addition of NO and H2S significantly reduced the bioaccumulation of Pb and Cd in alfalfa-rhizobium symbiosis, respectively, thus avoiding the phytotoxicity caused by the excessive presence of metals. The addition of signaling molecules also alleviated metal-induced phytotoxicity by increasing antioxidant enzyme activity and inhibiting the level of lipid peroxidation and reactive oxygen species (ROS) in legume-rhizobium symbiosis. Also, signaling molecules improved soil nutrient cycling, increased soil enzyme activities, and promoted rhizosphere bacterial community diversity. Both partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) identified that using signaling molecules can improve plant growth by regulating major controlling variables (i.e., soil enzymes, soil nutrients, and microbial diversity/plant oxidative damage) in legume-rhizobium symbiosis. This study offers integrated insight that confirms that the exogenous application of signaling molecules can enhance the resistance of legume-rhizobium symbiosis under metal toxicity by regulating the biochemical response of the plant-soil system, thereby minimizing potential health risks.


Assuntos
Rhizobium , Poluentes do Solo/análise , Cádmio , Chumbo , Solo , Simbiose
5.
Chemosphere ; 254: 126724, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32334248

RESUMO

Chelants application can increase the bioavailability of metals, subsequently limiting plant growth and reducing the efficiency of phytoremediation. Plant growth-promoting rhizobacteria (PGPRs) and rhizobium have substantial potential to improve plant growth and plant tolerance to metal stress. We evaluated the effects of co-inoculation with a PGPR strain (Paenibacillus mucilaginosus) and a Cu-resistant rhizobium strain (Sinorhizobium meliloti) on the efficiency of biodegradable chelant (S,S-ethylenediaminedisuccinic acid; EDDS) assisted phytoremediation of a Cu contaminated soil using alfalfa. The highest total Cu extraction by alfalfa was observed in the EDDS-treated soil upon co-inoculation with the PGPR and rhizobium strains, which was 1.2 times higher than that without co-inoculation. Partial least squares path modeling identified plant oxidative damage and soil microbial biomass as the key variables influencing Cu uptake by alfalfa roots. Co-inoculation significantly reduced the oxidative damage to alfalfa by mitigating the accumulation of malondialdehyde and reactive oxygen species, and improving the antioxidation capacity of the plant in the presence of EDDS. EDDS application decreased microbial diversity in the rhizosphere, whereas co-inoculation increased microbial biomass carbon and nitrogen, and microbial community diversity. Increased relative abundances of Actinobacteria and Bacillus and the presence of Firmicutes taxa as potential biomarkers demonstrated that co-inoculation increased soil nutrient content, and improved plant growth. Co-inoculation with PGPR and rhizobium can be useful for altering plant-soil biochemical responses during EDDS-enhanced phytoremediation to alleviate phytotoxicity of heavy metals and improve soil biochemical activities. This study provides an effective strategy for improving phytoremediation efficiency and soil quality during chelant assisted phytoremediation of metal-contaminated soils.


Assuntos
Inoculantes Agrícolas , Biodegradação Ambiental/efeitos dos fármacos , Cobre/metabolismo , Etilenodiaminas/farmacologia , Rizosfera , Poluentes do Solo/metabolismo , Succinatos/farmacologia , Biomassa , Medicago sativa/metabolismo , Microbiota , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Rhizobium
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...