Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Biol Sex Differ ; 15(1): 40, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750585

RESUMO

BACKGROUND: Recent studies have shown that prenatal BPA exposure altered the transcriptome profiles of autism-related genes in the offspring's hippocampus, disrupting hippocampal neuritogenesis and causing male-specific deficits in learning. However, the sex differences in the effects of prenatal BPA exposure on the developing prefrontal cortex, which is another brain region highly implicated in autism spectrum disorder (ASD), have not been investigated. METHODS: We obtained transcriptome data from RNA sequencing analysis of the prefrontal cortex of male and female rat pups prenatally exposed to BPA or control and reanalyzed. BPA-responsive genes associated with cortical development and social behaviors were selected for confirmation by qRT-PCR analysis. Neuritogenesis of primary cells from the prefrontal cortex of pups prenatally exposed to BPA or control was examined. The social behaviors of the pups were assessed using the two-trial and three-chamber tests. The male-specific impact of the downregulation of a selected BPA-responsive gene (i.e., Sema5a) on cortical development in vivo was interrogated using siRNA-mediated knockdown by an in utero electroporation technique. RESULTS: Genes disrupted by prenatal BPA exposure were associated with ASD and showed sex-specific dysregulation. Sema5a and Slc9a9, which were involved in neuritogenesis and social behaviors, were downregulated only in males, while Anxa2 and Junb, which were also linked to neuritogenesis and social behaviors, were suppressed only in females. Neuritogenesis was increased in males and showed a strong inverse correlation with Sema5a and Slc9a9 expression levels, whereas, in the females, neuritogenesis was decreased and correlated with Anxa2 and Junb levels. The siRNA-mediated knockdown of Sema5a in males also impaired cortical development in utero. Consistent with Anxa2 and Junb downregulations, deficits in social novelty were observed only in female offspring but not in males. CONCLUSION: This is the first study to show that prenatal BPA exposure dysregulated the expression of ASD-related genes and functions, including cortical neuritogenesis and development and social behaviors, in a sex-dependent manner. Our findings suggest that, besides the hippocampus, BPA could also exert its adverse effects through sex-specific molecular mechanisms in the offspring's prefrontal cortex, which in turn would lead to sex differences in ASD-related neuropathology and clinical manifestations, which deserves further investigation.


Assuntos
Compostos Benzidrílicos , Fenóis , Córtex Pré-Frontal , Efeitos Tardios da Exposição Pré-Natal , Caracteres Sexuais , Comportamento Social , Animais , Feminino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Fenóis/toxicidade , Fenóis/efeitos adversos , Masculino , Compostos Benzidrílicos/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Transtorno Autístico/genética , Transtorno Autístico/induzido quimicamente , Ratos Sprague-Dawley , Ratos , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/genética
2.
Heliyon ; 9(12): e22589, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38144275

RESUMO

Epigenetic alteration by oxidative stress is vitally involved in carcinogenesis and cancer progression. Previously, we demonstrated that oxidative stress was increased in hepatocellular carcinoma (HCC) patients and associated with tumor aggressiveness. Herein, we immunohistochemically investigated whether histone methylation, specifically H4K20me3, was upregulated in human hepatic tissues obtained from HCC patients (n = 100). Also, we experimentally explored if the H4K20me3 was upregulated by reactive oxygen species (ROS) and contributed to tumor progression in HCC cell lines. We found that H4K20me3 level was increased in HCC tissues compared with the adjacent noncancerous liver tissues. H3K9me3 and H3K4me3 levels were also increased in HCC tissues. Cox regression analysis revealed that the elevated H4K20me3 level was associated with tumor recurrence and short survival in HCC patients. Experimentally, H2O2 provoked oxidative stress and induced H4K20me3 formation in HepG2 and Huh7 cells. Transcript expression of histone methyltransferase Suv420h2 (for H4K20me3), Suv39h1 (for H3K9me3), and Smyd3 (for H3K4me3) were upregulated in H2O2-treated HCC cells. H2O2 also induced epithelial-mesenchymal transition (EMT) in HCC cells, indicated by decreased E-cadherin but increased α-SMA and MMP-9 mRNA expression. Migration, invasion, and colony formation in HCC cells were markedly increased following the H2O2 exposure. Inhibition of H4K20me3 formation by A196 (a selective inhibitor of Suv420h2) attenuated EMT and reduced tumor migration in H2O2-treated HCC cells. In conclusion, we demonstrated for the first time that H4K20me3 level was increased in human HCC tissues, and it was independently associated with poor prognosis in HCC patients. ROS upregulated H4K20me3 formation, induced mRNA expression of EMT markers, and promoted tumor progression in human HCC cells. Inhibition of H4K20me3 formation reduced EMT and tumor aggressive phenotypes in ROS-treated HCC cells. Possibly, ROS-induced EMT and tumor progression in HCC cells was epigenetically mediated through an increased formation of repressive chromatin H4K20me3.

3.
Anat Histol Embryol ; 52(6): 944-955, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37559462

RESUMO

The lesser bamboo rat is a fossorial rodent within the monotypic genus Cannomys, family Spalacidae and is found in Indochina. The present work provides the first detailed description of the morphology of its digestive system, as examined by gross dissection and histological examination. The oesophagus was lined by a heavily keratinized epithelium and contained mostly striated muscles in the muscularis externa. The stomach was of the unilocular-hemiglandular type with a cornified squamous area at the fundus separated from the glandular area by the limiting ridge. The length ratio of the small intestine to the entire intestine was relatively low compared to that in other rodents. The caecum contained five to seven haustra and numerous lymphoid tissues, but no distinct appendix. Within the long colon, two non-papillated longitudinal folds forming a colonic groove, V-shaped mucosal folds like fishbones and abundant goblet cells were apparent. A five-lobed liver with a gallbladder and a diffuse pancreas were evident. These findings may indicate that the lesser bamboo rat is a caecal fermenter capable of feeding on highly abrasive plant material. Fermentation may take place via a mucus-trap colonic separation mechanism without coprophagy. The digestive system of the lesser bamboo rat is somewhat different from that of spalacid relatives.


Assuntos
Ceco , Estômago , Animais , Ceco/anatomia & histologia , Intestinos , Colo/anatomia & histologia , Esôfago , Roedores/anatomia & histologia
4.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108679

RESUMO

Alu elements are transposable elements that can influence gene regulation through several mechanisms; nevertheless, it remains unclear whether dysregulation of Alu elements contributes to the neuropathology of autism spectrum disorder (ASD). In this study, we characterized transposable element expression profiles and their sequence characteristics in the prefrontal cortex tissues of ASD and unaffected individuals using RNA-sequencing data. Our results showed that most of the differentially expressed transposable elements belong to the Alu family, with 659 loci of Alu elements corresponding to 456 differentially expressed genes in the prefrontal cortex of ASD individuals. We predicted cis- and trans-regulation of Alu elements to host/distant genes by conducting correlation analyses. The expression level of Alu elements correlated significantly with 133 host genes (cis-regulation, adjusted p < 0.05) associated with ASD as well as the cell survival and cell death of neuronal cells. Transcription factor binding sites in the promoter regions of differentially expressed Alu elements are conserved and associated with autism candidate genes, including RORA. COBRA analyses of postmortem brain tissues showed significant hypomethylation in global methylation analyses of Alu elements in ASD subphenotypes as well as DNA methylation of Alu elements located near the RNF-135 gene (p < 0.05). In addition, we found that neuronal cell density, which was significantly increased (p = 0.042), correlated with the expression of genes associated with Alu elements in the prefrontal cortex of ASD. Finally, we determined a relationship between these findings and the ASD severity (i.e., ADI-R scores) of individuals with ASD. Our findings provide a better understanding of the impact of Alu elements on gene regulation and molecular neuropathology in the brain tissues of ASD individuals, which deserves further investigation.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Elementos Alu/genética , Elementos de DNA Transponíveis , Metilação de DNA , Epigênese Genética , Córtex Pré-Frontal/metabolismo
5.
Biol Sex Differ ; 14(1): 8, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803626

RESUMO

BACKGROUND: Bisphenol A (BPA) has been linked to susceptibility to autism spectrum disorder (ASD). Our recent studies have shown that prenatal BPA exposure disrupted ASD-related gene expression in the hippocampus, neurological functions, and behaviors associated with ASD in a sex-specific pattern. However, the molecular mechanisms underlying the effects of BPA are still unclear. METHODS: Transcriptome data mining and molecular docking analyses were performed to identify ASD-related transcription factors (TFs) and their target genes underlying the sex-specific effects of prenatal BPA exposure. Gene ontology analysis was conducted to predict biological functions associated with these genes. The expression levels of ASD-related TFs and targets in the hippocampus of rat pups prenatally exposed to BPA were measured using qRT-PCR analysis. The role of the androgen receptor (AR) in BPA-mediated regulation of ASD candidate genes was investigated using a human neuronal cell line stably transfected with AR-expression or control plasmid. Synaptogenesis, which is a function associated with genes transcriptionally regulated by ASD-related TFs, was assessed using primary hippocampal neurons isolated from male and female rat pups prenatally exposed to BPA. RESULTS: We found that there was a sex difference in ASD-related TFs underlying the effects of prenatal BPA exposure on the transcriptome profiles of the offspring hippocampus. In addition to the known BPA targets AR and ESR1, BPA could directly interact with novel targets (i.e., KDM5B, SMAD4, and TCF7L2). The targets of these TFs were also associated with ASD. Prenatal BPA exposure disrupted the expression of ASD-related TFs and targets in the offspring hippocampus in a sex-dependent manner. Moreover, AR was involved in the BPA-mediated dysregulation of AUTS2, KMT2C, and SMARCC2. Prenatal BPA exposure altered synaptogenesis by increasing synaptic protein levels in males but not in females, but the number of excitatory synapses was increased in female primary neurons only. CONCLUSIONS: Our findings suggest that AR and other ASD-related TFs are involved in sex differences in the effects of prenatal BPA exposure on transcriptome profiles and synaptogenesis in the offspring hippocampus. These TFs may play an essential role in an increased ASD susceptibility associated with endocrine-disrupting chemicals, particularly BPA, and the male bias of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Gravidez , Ratos , Animais , Feminino , Masculino , Humanos , Transcriptoma , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/genética , Caracteres Sexuais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Simulação de Acoplamento Molecular , Hipocampo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/farmacologia
6.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012644

RESUMO

MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate target mRNA expression, and altered expression of miRNAs is associated with liver pathological conditions. Recent studies in animal models have shown neutrophil/myeloid-specific microRNA-223 (miR-223) as a key regulator in the development of various liver diseases including fibrosis, where hepatic stellate cells (HSCs) are the key player in pathogenesis. However, the precise roles of miR-223 in human HSCs and its therapeutic potential to control fibrosis remain largely unexplored. Using primary human HSCs, we demonstrated that miR-223 suppressed the fibrogenic program and cellular proliferation while promoting features of quiescent HSCs including lipid re-accumulation and retinol storage. Furthermore, induction of miR-223 in HSCs decreased cellular motility and contraction. Mechanistically, miR-223 negatively regulated expression of smooth muscle α-actin (α-SMA) and thus reduced cytoskeletal activity, which is known to promote amplification of fibrogenic signals. Restoration of α-SMA in miR-223-overexpressing HSCs alleviated the antifibrotic effects of miR-223. Finally, to explore the therapeutic potential of miR-233 in liver fibrosis, we generated co-cultured organoids of HSCs with Huh7 hepatoma cells and challenged them with acetaminophen (APAP) or palmitic acid (PA) to induce hepatotoxicity. We showed that ectopic expression of miR-223 in HSCs attenuated fibrogenesis in the two human organoid models of liver injury, suggesting its potential application in antifibrotic therapy.


Assuntos
Citoesqueleto de Actina , Células Estreladas do Fígado , MicroRNAs , Citoesqueleto de Actina/metabolismo , Proliferação de Células , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/metabolismo , MicroRNAs/metabolismo , Organoides/metabolismo , Transdução de Sinais
7.
FASEB Bioadv ; 4(6): 408-434, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35664831

RESUMO

The endogenous DNA damage triggering an aging progression in the elderly is prevented in the youth, probably by naturally occurring DNA gaps. Decreased DNA gaps are found during chronological aging in yeast. So we named the gaps "Youth-DNA-GAPs." The gaps are hidden by histone deacetylation to prevent DNA break response and were also reduced in cells lacking either the high-mobility group box (HMGB) or the NAD-dependent histone deacetylase, SIR2. A reduction in DNA gaps results in shearing DNA strands and decreasing cell viability. Here, we show the roles of DNA gaps in genomic stability and aging prevention in mammals. The number of Youth-DNA-GAPs were low in senescent cells, two aging rat models, and the elderly. Box A domain of HMGB1 acts as molecular scissors in producing DNA gaps. Increased gaps consolidated DNA durability, leading to DNA protection and improved aging features in senescent cells and two aging rat models similar to those of young organisms. Like the naturally occurring Youth-DNA-GAPs, Box A-produced DNA gaps avoided DNA double-strand break response by histone deacetylation and SIRT1, a Sir2 homolog. In conclusion, Youth-DNA-GAPs are a biomarker determining the DNA aging stage (young/old). Box A-produced DNA gaps ultimately reverse aging features. Therefore, DNA gap formation is a potential strategy to monitor and treat aging-associated diseases.

8.
Sci Rep ; 12(1): 5102, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332173

RESUMO

Low fluid intake, low urinary citrate excretion, and high oxidative stress are main causative factors of calcium oxalate (CaOx) nephrolithiasis. HydroZitLa contains citrate and natural antioxidants and is developed to correct these three factors simultaneously. Antioxidants theoretically can prolong the lifespan of organisms. In this study, we preclinically investigated the antilithogenic, lifespan-extending and anti-aging effects of HydroZitLa in HK-2 cells, male Wistar rats, and Caenorhabditis elegans. HydroZitLa significantly inhibited CaOx crystal aggregation in vitro and reduced oxidative stress in HK-2 cells challenged with lithogenic factors. For experimental nephrolithiasis, rats were divided into four groups: ethylene glycol (EG), EG + HydroZitLa, EG + Uralyt-U, and untreated control. CaOx deposits in kidneys of EG + HydroZitLa and EG + Uralyt-U rats were significantly lower than those of EG rats. Intrarenal expression of 4-hydroxynonenal in EG + HydroZitLa rats was significantly lower than that of EG rats. The urinary oxalate levels of EG + HydroZitLa and EG + Uralyt-U rats were significantly lower than those of EG rats. The urinary citrate levels of EG + HydroZitLa and EG + Uralyt-U rats were restored to the level in normal control rats. In C. elegans, HydroZitLa supplementation significantly extended the median lifespan of nematodes up to 34% without altering feeding ability. Lipofuscin accumulation in HydroZitLa-supplemented nematodes was significantly lower than that of non-supplemented control. Additionally, HydroZitLa inhibited telomere shortening, p16 upregulation, and premature senescence in HK-2 cells exposed to lithogenic stressors. Conclusions, HydroZitLa inhibited oxidative stress and CaOx formation both in vitro and in vivo. HydroZitLa extended the lifespan and delayed the onset of aging in C. elegans and human kidney cells. This preclinical evidence suggests that HydroZitLa is beneficial for inhibiting CaOx stone formation, promoting longevity, and slowing down aging.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Animais , Antioxidantes/metabolismo , Caenorhabditis elegans/metabolismo , Oxalato de Cálcio/metabolismo , Ácido Cítrico/metabolismo , Etilenoglicol/farmacologia , Feminino , Humanos , Rim/metabolismo , Cálculos Renais/metabolismo , Longevidade , Masculino , Nefrolitíase , Ratos , Ratos Wistar
9.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34947998

RESUMO

Bisphenol A (BPA) is an environmental risk factor for autism spectrum disorder (ASD). BPA exposure dysregulates ASD-related genes in the hippocampus and neurological functions of offspring. However, whether prenatal BPA exposure has an impact on genes in the prefrontal cortex, another brain region highly implicated in ASD, and through what mechanisms have not been investigated. Here, we demonstrated that prenatal BPA exposure disrupts the transcriptome-interactome profiles of the prefrontal cortex of neonatal rats. Interestingly, the list of BPA-responsive genes was significantly enriched with known ASD candidate genes, as well as genes that were dysregulated in the postmortem brain tissues of ASD cases from multiple independent studies. Moreover, several differentially expressed genes in the offspring's prefrontal cortex were the targets of ASD-related transcription factors, including AR, ESR1, and RORA. The hypergeometric distribution analysis revealed that BPA may regulate the expression of such genes through these transcription factors in a sex-dependent manner. The molecular docking analysis of BPA and ASD-related transcription factors revealed novel potential targets of BPA, including RORA, SOX5, TCF4, and YY1. Our findings indicated that prenatal BPA exposure disrupts ASD-related genes in the offspring's prefrontal cortex and may increase the risk of ASD through sex-dependent molecular mechanisms, which should be investigated further.


Assuntos
Transtorno do Espectro Autista/genética , Compostos Benzidrílicos/efeitos adversos , Perfilação da Expressão Gênica/métodos , Fenóis/efeitos adversos , Córtex Pré-Frontal/química , Efeitos Tardios da Exposição Pré-Natal/genética , Fatores de Transcrição/genética , Animais , Transtorno do Espectro Autista/induzido quimicamente , Modelos Animais de Doenças , Receptor alfa de Estrogênio/genética , Feminino , Regulação da Expressão Gênica , Simulação de Acoplamento Molecular , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Receptores Androgênicos/genética , Análise de Sequência de RNA , Caracteres Sexuais
10.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884472

RESUMO

The extracellular matrix (ECM) plays crucial roles in the anterior pituitary gland via the mechanism of cell-ECM interaction. Since bisphenol A (BPA), a well-known endocrine disruptor, can cross through the placenta from mother to fetus and bind with estrogen receptors, cell populations in the neonatal anterior pituitary gland could be the target cells affected by this chemical. The present study treated maternal rats with 5000 µg/kg body weight of BPA daily throughout the pregnancy period and then investigated the changes in ECM-producing cells, i.e., pericytes and folliculostellate (FS) cells, including their ECM production in the neonatal anterior pituitary at Day 1. We found that pericytes and their collagen synthesis reduced, consistent with the increase in the number of FS cells that expressed several ECM regulators-matrix metalloproteinase (MMP) 9 and the tissue inhibitors of metalloproteinase (TIMP) family. The relative MMP9/TIMP1 ratio was extremely high, indicating that the control of ECM homeostasis was unbalanced. Moreover, transmission electron microscopy showed the unorganized cell cluster in the BPA-treated group. This study revealed that although the mother received BPA at the "no observed adverse effect" level, alterations in ECM-producing cells as well as collagen and the related ECM balancing genes occurred in the neonatal anterior pituitary gland.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Exposição Materna/efeitos adversos , Metaloproteinase 9 da Matriz/metabolismo , Fenóis/efeitos adversos , Adeno-Hipófise/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Animais , Animais Recém-Nascidos , Linhagem Celular , Colágeno/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Homeostase , Microscopia Eletrônica de Transmissão , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Adeno-Hipófise/metabolismo , Gravidez , Ratos , Regulação para Cima
11.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445338

RESUMO

Recently, another new cell type was found in the perivascular space called a novel desmin-immunopositive perivascular (DIP) cell. However, the differences between this novel cell type and other nonhormone-producing cells have not been clarified. Therefore, we introduced several microscopic techniques to gain insight into the morphological characteristics of this novel DIP cell. We succeeded in identifying novel DIP cells under light microscopy using desmin immunocryosection, combining resin embedding blocks and immunoelectron microscopy. In conventional transmission electron microscopy, folliculostellate cells, capsular fibroblasts, macrophages, and pericytes presented a flat cisternae of rough endoplasmic reticulum, whereas those of novel DIP cells had a dilated pattern. The number of novel DIP cells was greatest in the intact rats, though nearly disappeared under prolactinoma conditions. Additionally, focused ion beam scanning electron microscopy showed that these novel DIP cells had multidirectional processes and some processes reached the capillary, but these processes did not tightly wrap the vessel, as is the case with pericytes. Interestingly, we found that the rough endoplasmic reticulum was globular and dispersed throughout the cytoplasmic processes after three-dimensional reconstruction. This study clearly confirms that novel DIP cells are a new cell type in the rat anterior pituitary gland, with unique characteristics.


Assuntos
Desmina/metabolismo , Pericitos , Adeno-Hipófise/diagnóstico por imagem , Animais , Desmina/análise , Imuno-Histoquímica , Masculino , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Pericitos/citologia , Pericitos/metabolismo , Adeno-Hipófise/citologia , Adeno-Hipófise/metabolismo , Ratos , Ratos Wistar
12.
Molecules ; 26(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073542

RESUMO

3D porous scaffolds fabricated from binary and ternary blends of silk fibroin (SF), gelatin (G), and hyaluronan (HA) and crosslinked by the carbodiimide coupling reaction were developed. Water-stable scaffolds can be obtained after crosslinking, and the SFG and SFGHA samples were stable in cell culture medium up to 10 days. The presence of HA in the scaffolds with appropriate crosslinking conditions greatly enhanced the swellability. The microarchitecture of the freeze-dried scaffolds showed high porosity and interconnectivity. In particular, the pore size was significantly larger with an addition of HA. Biological activities of NIH/3T3 fibroblasts seeded on SFG and SFGHA scaffolds revealed that both scaffolds were able to support cell adhesion and proliferation of a 7-day culture. Furthermore, cell penetration into the scaffolds can be observed due to the interconnected porous structure of the scaffolds and the presence of bioactive materials which could attract the cells and support cell functions. The higher cell number was noticed in the SFGHA samples, possibly due to the HA component and the larger pore size which could improve the microenvironment for fibroblast adhesion, proliferation, and motility. The developed scaffolds from ternary blends showed potential in their application as 3D cell culture substrates in fibroblast-based tissue engineering.


Assuntos
Reagentes de Ligações Cruzadas/química , Fibroínas/química , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Bombyx , Adesão Celular , Proliferação de Células , Fibroblastos/metabolismo , Liofilização , Gelatina/química , Ácido Hialurônico/metabolismo , Imuno-Histoquímica , Camundongos , Células NIH 3T3 , Porosidade
13.
Pharmaceutics ; 13(5)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067883

RESUMO

Gold nanoparticles (AuNPs) are used for diagnostic and therapeutic purposes, especially antiangiogenesis, which are accomplished via inhibition of endothelial cell proliferation, migration, and tube formation. However, no research has been performed on the effects of AuNPs in pericytes, which play vital roles in endothelial cell functions and capillary tube formation during physiological and pathological processes. Therefore, the effects of AuNPs on the morphology and functions of pericytes need to be elucidated. This study treated human placental pericytes in monoculture with 20 nm AuNPs at a concentration of 30 ppm. Ki-67 and platelet-derived growth factor receptor-ß (PDGFR-ß) mRNA expression was measured using real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cell migration was assessed by Transwell migration assay. The fine structures of pericytes were observed by transmission electron microscopy. In addition, 30 ppm AuNP-treated pericytes and intact human umbilical vein endothelial cells were cocultured on Matrigel to form three-dimensional (3D) capillary tubes. The results demonstrated that AuNPs significantly inhibited proliferation, reduced PDGFR-ß mRNA expression, and decreased migration in pericytes. Ultrastructural analysis of pericytes revealed AuNPs in late endosomes, autolysosomes, and mitochondria. Remarkably, many mitochondria were swollen or damaged. Additionally, capillary tube formation was reduced. We found that numerous pericytes on 3D capillary tubes were round and did not extend their processes along the tubes, which resulted in more incomplete tube formation in the treatment group compared with the control group. In summary, AuNPs can affect pericyte proliferation, PDGFR-ß mRNA expression, migration, morphology, and capillary tube formation. The findings highlight the possible application of AuNPs in pericyte-targeted therapy for antiangiogenesis.

14.
Sci Rep ; 11(1): 1241, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441873

RESUMO

Our recent study has shown that prenatal exposure to bisphenol A (BPA) altered the expression of genes associated with autism spectrum disorder (ASD). In this study, we further investigated the effects of prenatal BPA exposure on ASD-related genes known to regulate neuronal viability, neuritogenesis, and learning/memory, and assessed these functions in the offspring of exposed pregnant rats. We found that prenatal BPA exposure increased neurite length, the number of primary neurites, and the number of neurite branches, but reduced the size of the hippocampal cell body in both sexes of the offspring. However, in utero exposure to BPA decreased the neuronal viability and the neuronal density in the hippocampus and impaired learning/memory only in the male offspring while the females were not affected. Interestingly, the expression of several ASD-related genes (e.g. Mief2, Eif3h, Cux1, and Atp8a1) in the hippocampus were dysregulated and showed a sex-specific correlation with neuronal viability, neuritogenesis, and/or learning/memory. The findings from this study suggest that prenatal BPA exposure disrupts ASD-related genes involved in neuronal viability, neuritogenesis, and learning/memory in a sex-dependent manner, and these genes may play an important role in the risk and the higher prevalence of ASD in males subjected to prenatal BPA exposure.


Assuntos
Transtorno do Espectro Autista/metabolismo , Compostos Benzidrílicos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Caracteres Sexuais , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Feminino , Hipocampo/patologia , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Wistar
15.
Int J Nanomedicine ; 14: 4573-4587, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31296987

RESUMO

Introduction: Engineered nanoparticles (ENPs) are one of the most widely used types of nanomaterials. Recently, ENPs have been shown to cause cellular damage by inducing ROS (reactive oxygen species) both directly and indirectly, leading to the changes in DNA methylation levels, which is an important epigenetic mechanism. In this study, we investigated the effect of ENP-induced ROS on DNA methylation. Materials and methods: Human embryonic kidney and human keratinocyte (HaCaT) cells were exposed to three different types of ENPs: gold nanoparticles, silicon nanoparticles (SiNPs), and chitosan nanoparticles (CSNPs). We then evaluated the cytotoxicity of the ENPs by measuring cell viability, morphology, cell apoptosis, cell proliferation, cell cycle distribution and ROS levels. Global DNA methylation levels was measured using 5-methylcytosine immunocytochemical staining and HPLC analysis. DNA methylation levels of the transposable elements, long interspersed element-1 (LINE-1) and Alu, were also measured using combined bisulfite restriction analysis technique. DNA methylation levels of the TEs LINE-1 and Alu were also measured using combined bisulfite restriction analysis technique. Results: We found that HaCaT cells that were exposed to SiNPs exhibited increased ROS levels, whereas HaCaT cells that were exposed to SiNPs and CSNPs experienced global and Alu hypomethylation, with no change in LINE-1 being observed in either cell line. The demethylation of Alu in HaCaT cells following exposure to SiNPs and CSNPs was prevented when the cells were pretreated with an antioxidant. Conclusion: The global DNA methylation that is observed in cells exposed to ENPs is associated with methylation of the Alu elements. However, the change in DNA methylation levels following ENP exposure is specific to particular ENP and cell types and independent of ROS, being induced indirectly through disruption of the oxidative defense process.


Assuntos
Acetilcisteína/farmacologia , Metilação de DNA/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/toxicidade , Elementos Alu/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/metabolismo , Epigênese Genética , Ouro/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Elementos Nucleotídeos Longos e Dispersos/efeitos dos fármacos , Coroa de Proteína , Espécies Reativas de Oxigênio/metabolismo , Silício/química
16.
Toxicol Res ; 35(3): 257-270, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31341555

RESUMO

Silver nanoparticles (AgNPs) have been widely used in a variety of applications in innovative development; consequently, people are more exposed to this particle. Growing concern about toxicity from AgNP exposure has attracted greater attention, while questions about nanosilver-responsive genes and consequences for human health remain unanswered. By considering early detection and prevention of nanotoxicology at the genetic level, this study aimed to identify 1) changes in gene expression levels that could be potential indicators for AgNP toxicity and 2) morphological phenotypes correlating to toxicity of HepG2 cells. To detect possible nanosilver-responsive genes in xenogenic targeted organs, a comprehensive systematic literature review of changes in gene expression in HepG2 cells after AgNP exposure and in silico method, connection up- and down-regulation expression analysis of microarrays (CU-DREAM), were performed. In addition, cells were extracted and processed for transmission electron microscopy to examine ultrastructural alterations. From the Gene Expression Omnibus (GEO) Series database, we selected genes that were up- and down-regulated in AgNPs, but not up- and down-regulated in silver ion exposed cells, as nanosilver-responsive genes. HepG2 cells in the AgNP-treated group showed distinct ultrastructural alterations. Our results suggested potential representative gene data after AgNPs exposure provide insight into assessment and prediction of toxicity from nanosilver exposure.

17.
Int. j. morphol ; 37(2): 509-514, June 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1002252

RESUMO

Cisplatin is an antineoplastic agent with neuropathy as one of its major side effect. However, effective treatment is lacking. Increasing evidence suggests that cisplatin might damage nerve capillaries leading to impaired functions of blood-nerve barrier (BNB) and neuropathy. This study was aimed to examine the effects of cisplatin on pericytes. Rats were either treated with intraperitoneal injection of cisplatin 2 mg/kg twice a week for five continuous weeks. Cisplatin-treated rats showed reduced body weight, thermal hypoalgesia and slow sciatic motor nerve conduction velocity, indicating neuropathy. The density of pericytes in the distal sciatic nerves determined by immunohistochemistry to desmin was significantly reduced in the cisplatin compared with that of the control groups. Electron microscopic analysis demonstrated the detachment of pericytes from endothelial cells including the disruption of shared basement membrane in the sciatic nerves from cisplatin-treated rats. These data indicate the pericyte loss and detachment caused by cisplatin. Future studies of the BNB components and functions after cisplatin treatment are needed and will be essential for the development of effective treatments against cisplatin-induced neuropathy.


El cisplatino es un agente antineoplásico y presenta como uno de sus principales efectos secundarios, la neuropatía. Sin embargo, falta un tratamiento eficaz. La creciente evidencia sugiere que el cisplatino podría dañar los capilares nerviosos, lo que puede provocar una alteración de las funciones de la barrera hematoencefálica (BHE) y neuropatía. Este estudio tuvo como objetivo examinar los efectos del cisplatino en los pericitos. Las ratas se trataron con inyección intraperitoneal de cisplatino (2 mg/kg) dos veces por semana durante 5 semanas seguidas. Las ratas tratadas con cisplatino mostraron una reducción del peso corporal, hipoalgesia térmica y una velocidad de conducción del nervio ciático lenta, lo que indicaría neuropatía. La densidad de los pericitos en los nervios ciáticos distales determinada por inmunohistoquímica para desmina se redujo significativamente en el grupo cisplatino en comparación con la de los grupos controles. El análisis al microscopio electrónico demostró el desprendimiento de pericitos de las células endoteliales, incluida la ruptura de la membrana basal compartida en los nervios ciáticos de ratas tratadas con cisplatino. Estos datos indican la pérdida de pericitos y el desprendimiento causado por el cisplatino. Se necesitan estudios futuros de los componentes y funciones del BHE después del tratamiento con cisplatino y serán esenciales para el desarrollo de tratamientos efectivos contra la neuropatía inducida por el cisplatino.


Assuntos
Animais , Masculino , Ratos , Cisplatino/toxicidade , Pericitos/efeitos dos fármacos , Doenças do Sistema Nervoso/patologia , Antineoplásicos/toxicidade , Peso Corporal/efeitos dos fármacos , Imuno-Histoquímica , Ratos Wistar , Pericitos/patologia , Microscopia Eletrônica de Transmissão , Doenças do Sistema Nervoso/induzido quimicamente
18.
Sci Rep ; 9(1): 3038, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816183

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder inexplicably biased towards males. Although prenatal exposure to bisphenol A (BPA) has recently been associated with the ASD risk, whether BPA dysregulates ASD-related genes in the developing brain remains unclear. In this study, transcriptome profiling by RNA-seq analysis of hippocampi isolated from neonatal pups prenatally exposed to BPA was conducted and revealed a list of differentially expressed genes (DEGs) associated with ASD. Among the DEGs, several ASD candidate genes, including Auts2 and Foxp2, were dysregulated and showed sex differences in response to BPA exposure. The interactome and pathway analyses of DEGs using Ingenuity Pathway Analysis software revealed significant associations between the DEGs in males and neurological functions/disorders associated with ASD. Moreover, the reanalysis of transcriptome profiling data from previously published BPA studies consistently showed that BPA-responsive genes were significantly associated with ASD-related genes. The findings from this study indicate that prenatal BPA exposure alters the expression of ASD-linked genes in the hippocampus and suggest that maternal BPA exposure may increase ASD susceptibility by dysregulating genes associated with neurological functions known to be negatively impacted in ASD, which deserves further investigations.


Assuntos
Transtorno do Espectro Autista/genética , Compostos Benzidrílicos/toxicidade , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/genética , Animais , Animais Recém-Nascidos , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/patologia , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/metabolismo , Hipocampo/patologia , Humanos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , RNA-Seq , Ratos , Fatores Sexuais
19.
Free Radic Biol Med ; 134: 419-428, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30703483

RESUMO

Oxidative stress and reactivation of long interspersed element-1 (LINE-1) are coincidently observed in bladder cancer (BlCa), but the mechanistic connection between these two oncogenic phenomena is unknown. Previously, we reported increases in oxidative stress and LINE-1 protein (ORF1p) expression in human BlCa tissues. In this study, we measured 5-methylcytosine (5mC), 8-hydroxydeoxyguanosine (8-OHdG), 8-oxoguanosine DNA glycosylase-1 (OGG1), H3K9me3 and HP1α in bladder tissues obtained from BlCa patients. Reactivation of LINE-1 by reactive oxygen species (ROS) through chromatin remodeling was investigated in seven BlCa cell lines. We found that 5mC was decreased, but 8-OHdG, H3K9me3 and HP1α levels were increased in BlCa tissues relative to the adjacent non-cancerous tissues. OGG1, H3K9me3 and HP1α expression in BlCa tissues were positively correlated with 8-OHdG levels. Following H2O2 treatment, LINE-1 transcript expression was increased in VM-CUB-1 and TCCSUP, whereas AluYa5 and AluYb8 transcripts were increased in BFTC905 cells. Basal expression of LINE-1 ORF1p varied among BlCa cell lines from none to very high. H2O2 treatment clearly increased expression of ORF1p in VM-CUB-1, TCCSUP and BFTC905. Chromatin immunoprecipitation experiments revealed that 5'-LINE-1 promoters became further enriched in H3K4me3 and H3K18ac in VM-CUB-1 and BFTC905 cells treated with H2O2. In contrast, 5'-LINE-1 promoters became more enriched in H3K9me3 and H3K27me3 in UM-UC-3 treated with H2O2. In summary, decreased 5mC, but increased 8-OHdG, H3K9me3 and HP1α expression were demonstrated in human BlCa tissues, indicating global DNA hypomethylation, increased oxidative stress and altered histone methylation in BlCa. Chromatin structures were profoundly changed in BlCa cells exposed to ROS, but expression of LINE-1 transcript and protein were at most modestly increased. ROS enhanced expression of full-length LINE-1 elements only in cell lines with pre-existing activation, which was paralleled by increased formation of active chromatin at LINE-1 promoter loci.


Assuntos
Cromatina/metabolismo , Metilação de DNA , Epigênese Genética , Elementos Nucleotídeos Longos e Dispersos/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Bexiga Urinária/patologia , 8-Hidroxi-2'-Desoxiguanosina/análogos & derivados , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Idoso , Estudos de Casos e Controles , Cromatina/genética , Homólogo 5 da Proteína Cromobox , DNA Glicosilases/metabolismo , Feminino , Humanos , Masculino , Regiões Promotoras Genéticas , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo
20.
Acta Histochem Cytochem ; 51(5): 145-152, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30510328

RESUMO

Laminin, a major basement membrane protein, comprises three subunit chains: α, ß, and γ chains. Among these chains, only the laminin α chain is capable of signaling via laminin receptors. Although laminin isoforms containing the α5 chain were reported to be the first laminin produced during rat anterior pituitary gland development, the functions of these isoforms are unknown. We used immunohistochemical techniques to localize the laminin α5 chain and its specific receptor, basal cell adhesion molecule (BCAM), in fetal and adult pituitary gland. Laminin α5 chain immunoreactivity was observed in the basement membrane of the primordial adenohypophysis at embryonic days 12.5 to 19.5. Double immunostaining showed that BCAM was present and co-localized with the laminin α5 chain in the tissue. Quantitative analysis showed that the laminin α5 chain and BCAM were expressed in the anterior pituitary gland during postnatal development and in adulthood (postnatal day 60). In the adult gland, co-localization of the laminin α5 chain and BCAM was observed, and BCAM was detected in both the folliculo-stellate cells and endothelial cells. These results suggest that laminin α5 chain signaling via BCAM occurs in both the fetal adenohypophysis and adult anterior pituitary gland.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...