RESUMO
Background and purpose: In vivo dosimetry is not standard in brachytherapy and some errors go undetected. The aim of this study was to evaluate the accuracy of multi-channel vaginal cylinder pulsed dose-rate brachytherapy using in vivo dosimetry. Materials and methods: In vivo dosimetry data was collected during the years 2019-2022 for 22 patients (32 fractions) receiving multi-channel cylinder pulsed dose-rate brachytherapy. An inorganic scintillation detector was inserted in a cylinder channel. Each fraction was analysed as independent data sets. In vivo dosimetry-based source-tracking was used to determine the relative source-to-detector position. Measured dose was compared to planned and re-calculated source-tracking based doses. Assuming no change in organ and applicator geometry throughout treatment, the planned and source-tracking based dose distributions were compared in select volumes via γ-index analysis and dose-volume-histograms. Results: The mean ± SD planned vs. measured dose deviations in the first pulse were 0.8 ± 5.9 %. In 31/32 fractions the deviation was within the combined in vivo dosimetry uncertainty (averaging 9.7 %, k = 2) and planning dose calculation uncertainty (1.6 %, k = 2). The dwell-position offsets were < 2 mm for 88 % of channels, with the largest being 5.1 mm (4.0 mm uncertainty, k = 2). 3 %/2 mm γ pass-rates averaged 97.0 % (clinical target volume (CTV)), 100.0 % (rectum), 99.9 % (bladder). The mean ± SD deviation was -1. 1 ± 2.9 % for CTV D98, and -0.2 ± 0.9 % and -1.2 ± 2.5 %, for bladder and rectum D2cm3 respectively, indicating good agreement between intended and delivered dose. Conclusions: In vivo dosimetry verified accurate and stable dose delivery in multi-channel vaginal cylinder based pulsed dose-rate brachytherapy.
RESUMO
Background and purpose: Oxygen dynamics may be important for the tissue-sparing effect observed at ultra-high dose rates (FLASH sparing effect). This study investigated the correlation between local instantaneous dose rate and radiation-induced oxygen pressure reduction during proton pencil beam scanning (PBS) irradiations of a sample and quantified the oxygen consumption g-value. Materials and methods: A 0.2 ml phosphorescent sample (1 µM PtG4 Oxyphor probe in saline) was irradiated with a 244 MeV proton PBS beam. Four irradiations were performed with variations of a PBS spot pattern with 5 × 7 spots. During irradiation, the partial oxygen pressure (pO2) was measured with 4.5 Hz temporal resolution with a phosphorometer (Oxyled) that optically excited the probe and recorded the subsequently emitted light. A calibration was performed to calculate the pO2 level from the measured phosphorescence lifetime. A fiber-coupled scintillator simultaneously measured the instantaneous dose rate in the sample with 50 kHz sampling rate. The oxygen consumption g-value was determined on a spot-by-spot level and using the total pO2 change for full spot pattern irradiation. Results: A high correlation was found between the local instantaneous dose rate and pO2 reduction rate, with a correlation coefficient of 0.96-0.99. The g-vales were 0.18 ± 0.01 mmHg/Gy on a spot-by-spot level and 0.17 ± 0.01 mmHg/Gy for full spot pattern irradiation. Conclusions: The pO2 reduction rate was directly related to the local instantaneous dose rate per delivered spot in PBS deliveries. The methodology presented here can be applied to irradiation at ultra-high dose rates with modifications in the experimental setup.
RESUMO
The impact of ocean warming on fish and fisheries is vigorously debated. Leading theories project limited adaptive capacity of tropical fishes and 14-39% size reductions by 2050 due to mass-scaling limitations of oxygen supply in larger individuals. Using the world's hottest coral reefs in the Persian/Arabian Gulf as a natural laboratory for ocean warming - where species have survived >35.0 °C summer temperatures for over 6000 years and are 14-40% smaller at maximum size compared to cooler locations - we identified two adaptive pathways that enhance survival at elevated temperatures across 10 metabolic and swimming performance metrics. Comparing Lutjanus ehrenbergii and Scolopsis ghanam from reefs both inside and outside the Persian/Arabian Gulf across temperatures of 27.0 °C, 31.5 °C and 35.5 °C, we reveal that these species show a lower-than-expected rise in basal metabolic demands and a right-shifted thermal window, which aids in maintaining oxygen supply and aerobic performance to 35.5 °C. Importantly, our findings challenge traditional oxygen-limitation theories, suggesting a mismatch in energy acquisition and demand as the primary driver of size reductions. Our data support a modified resource-acquisition theory to explain how ocean warming leads to species-specific size reductions and why smaller individuals are evolutionarily favored under elevated temperatures.
Assuntos
Recifes de Corais , Animais , Tamanho Corporal/fisiologia , Aquecimento Global , Oceanos e Mares , Peixes/fisiologia , Oceano Índico , Oxigênio/metabolismo , Temperatura , Temperatura Alta , PesqueirosRESUMO
Objective: A favorable effect of ultra-high dose rate (FLASH) radiation on normal tissue-sparing has been indicated in several preclinical studies. In these studies, the adverse effects of radiation damage were reduced without compromising tumor control. Most studies of proton FLASH investigate these effects within the entrance of a proton beam. However, the real advantage of proton therapy lies in the Spread-out Bragg Peak (SOBP), which allows for giving a high dose to a target with a limited dose to healthy tissue at the entrance of the beam. Therefore, a clinically relevant investigation of the FLASH effect would be of healthy tissues within a SOBP. Our study quantified the tissue-sparing effect of FLASH radiation on acute and late toxicity within an SOBP in a murine model. Material/Methods: Radiation-induced damage was assessed for acute and late toxicity in the same mice following irradiation with FLASH (Field dose rate of 60 Gy/s) or conventional (CONV, 0.34 Gy/s) dose rates. The right hindleg of unanesthetized female CDF1 mice was irradiated with single-fraction doses between 19.9-49.7 Gy for CONV and 30.4-65.9 Gy for FLASH with 5-8 mice per dose. The leg was placed in the middle of a 5 cm SOBP generated from a mono-energetic beam using a 2D range modulator. Acute skin toxicity quantified by hair loss, moist desquamation and toe separation was monitored daily within 29 days post-treatment. Late toxicity of fibrotic development measured by leg extendibility was monitored biweekly until 30 weeks post-treatment. Results: Comparison of acute skin toxicity following radiation indicated a tissue-sparing effect of FLASH compared to conventional single-fraction radiation with a mean protection ratio of 1.40 (1.35-1.46). Fibrotic development similarly indicated normal tissue sparing with a 1.18 (1.17-1.18) protection ratio. The acute skin toxicity tissue sparing was similar to data from entrance-beam irradiations of Sørensen et al. (4). Conclusion: Full dose-response curves for acute and late toxicity after CONV and FLASH radiation were obtained. Radiation within the SOBP retains the normal-tissue-sparing effect of FLASH with a dose-modifying factor of 40% for acute skin damage and 18% for fibrotic development.
RESUMO
BACKGROUND: In vivo dosimetry (IVD) is rarely performed in brachytherapy (BT), allowing potential dose misadministration to go unnoticed. This study presents a clinical routine-calibration method of detectors for IVD in high (HDR) and pulsed dose rate (PDR) Ir-192 BT. PURPOSE: To evaluate the dosimetric precision and feasibility of an in-clinic calibration routine of detectors for IVD in afterloading BT. METHODS: Calibrations were performed in a PMMA phantom with two needles inserted 20 mm apart. The source was loaded in one of the needles at 15 dwells for 10 s. The detector was placed in the other needle, and its signal was recorded. The mean signal at each dwell position was fitted to the expected dose rate with the calibration factor and the detector's longitudinal position being free parameters. The method was tested with an inorganic scintillation detector using one Ir-192 FlexiSource HDR and two Ir-192 GammaMedPlus PDR sources and followed by validation measurements in water. RESULTS: The standard measurement uncertainty (k = 1) of the calibration factor in absolute terms (Gy/s) was 3.2/3.4% for the HDR/PDR source. The uncertainty was dominated by source strength uncertainty, and the precision of the method was <1%. The mean ± 1SD of the difference in measured and expected dose rate during validation was 1.5 ± 4.7% (HDR) and 0.0 ± 4.1% (PDR) with a positional uncertainty in the setup of 0.33/0.23 mm (HDR/PDR) (k = 1). CONCLUSION: A precise and feasible in-clinic calibration method for IVD and source strength consistency tests in BT was presented.
Assuntos
Braquiterapia , Imagens de Fantasmas , Dosagem Radioterapêutica , Contagem de Cintilação , Braquiterapia/instrumentação , Braquiterapia/métodos , Braquiterapia/normas , Calibragem , Humanos , Contagem de Cintilação/instrumentação , Dosimetria in Vivo , Radioisótopos de Irídio/uso terapêutico , Desenho de Equipamento , Reprodutibilidade dos TestesRESUMO
The quantum approximate optimization algorithm (QAOA) is a leading candidate algorithm for solving optimization problems on quantum computers. However, the potential of QAOA to tackle classically intractable problems remains unclear. Here, we perform an extensive numerical investigation of QAOA on the low autocorrelation binary sequences (LABS) problem, which is classically intractable even for moderately sized instances. We perform noiseless simulations with up to 40 qubits and observe that the runtime of QAOA with fixed parameters scales better than branch-and-bound solvers, which are the state-of-the-art exact solvers for LABS. The combination of QAOA with quantum minimum finding gives the best empirical scaling of any algorithm for the LABS problem. We demonstrate experimental progress in executing QAOA for the LABS problem using an algorithm-specific error detection scheme on Quantinuum trapped-ion processors. Our results provide evidence for the utility of QAOA as an algorithmic component that enables quantum speedups.
RESUMO
PURPOSE: Preclinical studies have shown a preferential normal tissue sparing effect of FLASH radiation therapy with ultra-high dose rates. The aim of the present study was to use a murine model of acute skin toxicity to investigate the biologic effect of varying dose rates, time structure, and introducing pauses in the dose delivery. METHODS AND MATERIALS: The right hind limbs of nonanaesthetized mice were irradiated in the entrance plateau of a pencil beam scanning proton beam with 39.3 Gy. Experiment 1 was with varying field dose rates (0.7-80 Gy/s) without repainting, experiment 2 was with varying field dose rates (0.37-80 Gy/s) with repainting, and in experiment 3, the dose was split into 2, 3, 4, or 6 identical deliveries with 2-minute pauses. In total, 320 mice were included, with 6 to 25 mice per group. The endpoints were skin toxicity of different levels up to 25 days after irradiation. RESULTS: The dose rate50, which is the dose rate to induce a response in 50% of the animals, depended on the level of skin toxicity, with the higher toxicity levels displaying a FLASH effect at 0.7-2 Gy/s. Repainting resulted in higher toxicity for the same field dose rate. Splitting the dose into 2 deliveries reduced the FLASH effect, and for 3 or more deliveries, the FLASH effect was almost abolished for lower grades of toxicity. CONCLUSIONS: The dose rate that induced a FLASH effect varied for different skin toxicity levels, which are characterized by a differing degree of sensitivity to radiation dosage. Conclusions on a threshold for the dose rate needed to obtain a FLASH effect can therefore be influenced by the dose sensitivity of the used endpoint. Splitting the total dose into more deliveries compromised the FLASH effect. This can have an impact for fractionation as well as for regions where 2 or more FLASH fields overlap within the same treatment session.
Assuntos
Terapia com Prótons , Pele , Animais , Camundongos , Pele/efeitos da radiação , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Relação Dose-Resposta à Radiação , Feminino , Fatores de Tempo , Membro Posterior/efeitos da radiação , Lesões Experimentais por Radiação , Dosagem RadioterapêuticaRESUMO
BACKGROUND: Dosimetry in pre-clinical FLASH studies is essential for understanding the beam delivery conditions that trigger the FLASH effect. Resolving the spatial and temporal characteristics of proton pencil beam scanning (PBS) irradiations with ultra-high dose rates (UHDR) requires a detector with high spatial and temporal resolution. PURPOSE: To implement a novel camera-based system for time-resolved two-dimensional (2D) monitoring and apply it in vivo during pre-clinical proton PBS mouse irradiations. METHODS: Time-resolved 2D beam monitoring was performed with a scintillation imaging system consisting of a 1 mm thick transparent scintillating sheet, imaged by a CMOS camera. The sheet was placed in a water bath perpendicular to a horizontal PBS proton beam axis. The scintillation light was reflected through a system of mirrors and captured by the camera with 500 frames per second (fps) for UHDR and 4 fps for conventional dose rates. The raw images were background subtracted, geometrically transformed, flat field corrected, and spatially filtered. The system was used for 2D spot and field profile measurements and compared to radiochromic films. Furthermore, spot positions were measured for UHDR irradiations. The measured spot positions were compared to the planned positions and the relative instantaneous dose rate to equivalent fiber-coupled point scintillator measurements. For in vivo application, the scintillating sheet was placed 1 cm upstream the right hind leg of non-anaesthetized mice submerged in the water bath. The mouse leg and sheet were both placed in a 5 cm wide spread-out Bragg peak formed from the mono-energetic proton beam by a 2D range modulator. The mouse leg position within the field was identified for both conventional and FLASH irradiations. For the conventional irradiations, the mouse foot position was tracked throughout the beam delivery, which took place through repainting. For FLASH irradiations, the delivered spot positions and relative instantaneous dose rate were measured. RESULTS: The pixel size was 0.1 mm for all measurements. The spot and field profiles measured with the scintillating sheet agreed with radiochromic films within 0.4 mm. The standard deviation between measured and planned spot positions was 0.26 mm and 0.35 mm in the horizontal and vertical direction, respectively. The measured relative instantaneous dose rate showed a linear relation with the fiber-coupled scintillator measurements. For in vivo use, the leg position within the field varied between mice, and leg movement up to 3 mm was detected during the prolonged conventional irradiations. CONCLUSIONS: The scintillation imaging system allowed for monitoring of UHDR proton PBS delivery in vivo with 0.1 mm pixel size and 2 ms temporal resolution. The feasibility of instantaneous dose rate measurements was demonstrated, and the system was used for validation of the mouse leg position within the field.
Assuntos
Terapia com Prótons , Contagem de Cintilação , Animais , Camundongos , Contagem de Cintilação/instrumentação , Terapia com Prótons/instrumentação , Fatores de Tempo , Radiometria/instrumentação , Radiometria/métodos , Dosagem Radioterapêutica , PrótonsRESUMO
PURPOSE: The aim of this work was to investigate the ability of a biological oxygen enhancement ratio-weighted dose, DOER, to describe acute skin toxicity variations observed in mice after proton pencil beam scanning irradiations with changing doses and beam time structures. METHODS AND MATERIALS: In five independent experiments, the right hind leg of a total of 621 CDF1 mice was irradiated previously in the entrance plateau of a pencil beam scanning proton beam. The incidence of acute skin toxicity (of level 1.5-2.0-2.5-3.0-3.5) was scored for 47 different mouse groups that mapped toxicity as function of dose for conventional and FLASH dose rate, toxicity as function of field dose rate with and without repainting, and toxicity when splitting the treatment into 1 to 6 identical deliveries separated by 2 minutes. DOER was calculated for all mouse groups using a simple oxygen kinetics model to describe oxygen depletion. The three independent model parameters (oxygen-depletion rate, oxygen-recovery rate, oxygen level without irradiation) were fitted to the experimental data. The ability of DOER to describe the toxicity variations across all experiments was investigated by comparing DOER-response curves across the five independent experiments. RESULTS: After conversion from the independent variable tested in each experiment to DOER, all five experiments had similar MDDOER50 (DOER giving 50% toxicity incidence) with standard deviations of 0.45 - 1.6 Gy for the five toxicity levels. DOER could thus describe the observed toxicity variations across all experiments. CONCLUSIONS: DOER described the varying FLASH-sparing effect observed for a wide range of conditions. Calculation of DOER for other irradiation conditions can quantitatively estimate the FLASH-sparing effect for arbitrary irradiations for the investigated murine model. With appropriate fitting parameters DOER also may be able to describe FLASH effect variations with dose and dose rate for other assays and endpoints.
Assuntos
Oxigênio , Terapia com Prótons , Pele , Animais , Camundongos , Pele/efeitos da radiação , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Lesões Experimentais por Radiação/prevenção & controle , Fatores de Tempo , Relação Dose-Resposta à Radiação , Radiodermite/etiologia , Radiodermite/patologia , Feminino , Membro Posterior/efeitos da radiação , Camundongos Endogâmicos , Prótons/efeitos adversosRESUMO
Non-Abelian topological order is a coveted state of matter with remarkable properties, including quasiparticles that can remember the sequence in which they are exchanged1-4. These anyonic excitations are promising building blocks of fault-tolerant quantum computers5,6. However, despite extensive efforts, non-Abelian topological order and its excitations have remained elusive, unlike the simpler quasiparticles or defects in Abelian topological order. Here we present the realization of non-Abelian topological order in the wavefunction prepared in a quantum processor and demonstrate control of its anyons. Using an adaptive circuit on Quantinuum's H2 trapped-ion quantum processor, we create the ground-state wavefunction of D4 topological order on a kagome lattice of 27 qubits, with fidelity per site exceeding 98.4 per cent. By creating and moving anyons along Borromean rings in spacetime, anyon interferometry detects an intrinsically non-Abelian braiding process. Furthermore, tunnelling non-Abelions around a torus creates all 22 ground states, as well as an excited state with a single anyon-a peculiar feature of non-Abelian topological order. This work illustrates the counterintuitive nature of non-Abelions and enables their study in quantum devices.
RESUMO
BACKGROUND: Inorganic scintillation detectors (ISDs) are promising for in vivo dosimetry in brachytherapy (BT). ISDs have fast response, providing time resolved dose rate information, and high sensitivity, attributed to high atomic numbers. However, the conversion of the detector signal to absorbed dose-to-water is highly dependent on the energy spectrum of the incident radiation. This dependence is comprised of absorbed dose energy dependence, obtainable with Monte Carlo (MC) simulation, and the absorbed dose-to-signal conversion efficiency or intrinsic energy dependence requiring measurements. Studies have indicated negligible intrinsic energy dependence of ZnSe:O-based ISDs in Ir-192 BT. A full characterization has not been performed earlier. PURPOSE: This study characterizes the intrinsic energy dependence of ZnSe:O-based ISDs for kV X-ray radiation qualities, with energies relevant for BT. METHODS: Three point-like ISDs made from fiber-coupled cuboid ZnSe:O-based scintillators were calibrated at the Swedish National Metrology Laboratory for ionizing radiation. The calibration was done in terms of air kerma free-in-air, K air ${K}_{{\mathrm{air}}}$ , in 13 X-ray radiation qualities, Q $Q$ , from 25 to 300 kVp (CCRI 25-250 kV and ISO 4037 N-series), and in terms of absorbed dose to water, D w ${D}_{\mathrm{w}}$ , in a Co-60 beam, Q 0 ${Q}_0$ . The mean absorbed dose to the ISDs, relative to K air ${K}_{{\mathrm{air}}}$ and D w ${D}_{\mathrm{w}}$ , were obtained with the MC code TOPAS (Geant4) using X-ray spectra obtained with SpekPy software and laboratory filtration data and a generic Co-60 source. The intrinsic energy dependence was determined as a function of effective photon energy, E e f f ${E}_{eff}$ , (relative to Co-60). The angular dependence of the ISD signal was measured in a 25 kVp (0.20 mm Al HVL) and 135 kVp beam (0.48 mm Cu HVL), by rotating the ISDs 180° around the fiber's longitudinal axis (perpendicular to the beam). A full 360° was not performed due to setup limitations. The impact of detector design was quantified with MC simulation. RESULTS: Above 30 keV E e f f ${E}_{eff}$ the intrinsic energy dependence varied with less than 5 ± 4% from unity for all detectors (with the uncertainty expressed as the mean of all expanded measurement uncertainties for individual E e f f ${E}_{eff}$ above 30 keV, k = 2). Below 30 keV, it decreased with up to 17% and inter-detector variations of 13% were observed, likely due to differences in detector geometry not captured by the simulations using nominal geometry. In the 25 kVp radiation quality, the ISD signal varied with 24% over a â¼45° rotation. For 135 kVp, the corresponding variation was below 3%. Assuming a 0.05 mm thicker layer of reflective paint around the sensitive volume changed the absorbed dose with 6.3% at the lowest E e f f ${E}_{eff}$ , and with less than 2% at higher energies. CONCLUSION: The study suggests that the ISDs have an intrinsic energy dependence relative to Co-60 lower than 5 ± 4% in radiation qualities with E e f f ${E}_{eff}\ $ > 30 keV. Therefore, they could in principle be calibrated in a Co-60 beam quality and transferred to such radiation qualities with correction factors determined only by the absorbed dose energy dependence obtained from MC simulations. This encourages exploration of the ISDs' applications in intensity modulated BT with Yb-169 or other novel intermediate energy isotopes.
Assuntos
Braquiterapia , Método de Monte Carlo , Contagem de Cintilação , Braquiterapia/instrumentação , Braquiterapia/métodos , Contagem de Cintilação/instrumentação , CalibragemRESUMO
PURPOSE: To use quantities measurable during in vivo dosimetry to build unique channel identifiers, that enable detection of brachytherapy errors. MATERIALS AND METHODS: Treatment plan of 360 patients with prostate cancer who underwent high-dose-rate brachytherapy (range, 16-25 catheters; mean, 17) were used. A single point virtual dosimeter was placed at multiple positions within the treatment geometry, and the source-dosimeter distance and dwell time were determined for each dwell position in each catheter. These values were compared across all catheters, dwell position by dwell position, simulating a treatment delivery. A catheter was considered uniquely identified if, for a given dwell position, no other catheters had the same measured values. The minimum number of dwell positions needed to identify a specific catheter and the optimal dosimeter location uniquely were determined. The radial (r) and vertical (z) dimensions of the source-dosimeter distance were also examined for their utility in discriminating catheters. RESULTS: Using a virtual dosimeter with no uncertainties, all catheters were identified in 359 of the 360 cases with 9 dwell position measurements. When only the dwell time were measured, all catheters were uniquely identified after 1 dwell position. With a 2-mm spatial accuracy (r,z), all catheters were identified in 94% of the plans. Simultaneous measurement of source-dosimeter distance and dwell time ensured full catheter identification in all plans ranging from 2 to 6 dwell positions. The number of dwell positions needed to uniquely identify all catheters was lower when the distance from the implant center was higher. CONCLUSIONS: The most efficient fingerprinting approach involved combining source-dosimeter distance (i.e., source tracking) and dwell time. The further the dosimeter is placed from the center of the implant the better it can uniquely identify catheters.
Assuntos
Braquiterapia , Dosimetria in Vivo , Masculino , Humanos , Dosagem Radioterapêutica , Braquiterapia/métodos , Imagens de Fantasmas , Catéteres , Planejamento da Radioterapia Assistida por Computador/métodosRESUMO
The retrotransverse foramen (RTF) is a nonmetric variant of the atlas vertebra that can accommodate an anastomotic vertebral vein and occipital nerve. An understanding of this variation and its occurrence is crucial, as it could aid in explanation of the unidentified cause of the high prevalence of variability in this region. The aim of this meta-analysis was to obtain data on the prevalence of the RTF and its variations according to anatomy, sex, and ethnicity. A large-scale search was conducted through the major online databases to establish and determine the pool of studies reporting data relevant to the RTF. No date or language restrictions were applied. The data collection was categorized by prevalence, type (incomplete/complete), side, sex, ethnicity, laterality, and diameter. A total of 17 studies (n = 1979 subjects) were incorporated into our analysis. The overall pooled prevalence for a complete RTF was 11.4% and the overall pooled prevalence of an incomplete (partial) RTF was 9.6%. A complete RTF was most prevalent in Africa (Sub-Saharan population) (12.1%), followed by Europe (11.8%) and Asia (9.7%). As this variant occurs in a significant number of patients in all of the aforementioned populations, recognition, and awareness, especially with thorough investigation with computer tomography angiography (CTA) should be implemented, as it is the only possible way to visualize the possible contents of RTF.
Assuntos
Atlas Cervical , Humanos , Prevalência , Atlas Cervical/diagnóstico por imagem , Atlas Cervical/anatomia & histologia , Angiografia por Tomografia Computadorizada , África , Bases de Dados FactuaisRESUMO
Background and Purpose: Proton therapy is sensitive to range uncertainties, which typically are accounted for by margins or robust optimization, based on tissue-independent uncertainties. However, range uncertainties have been shown to depend on the specific tissues traversed. The aim of this study was to investigate the differences between range margins based on stopping power ratio (SPR) uncertainties which were tissue-specific (applied voxel-wise) or fixed (tissue-independent or composite). Materials and Methods: Uncertainties originating from imaging, computed tomography (CT) number estimation, and SPR estimation were calculated for low-, medium-, and high-density tissues to quantify the tissue-specific SPR uncertainties. Four clinical treatment plans (four different tumor sites) were created and recomputed after applying either tissue-specific or fixed SPR uncertainties. Plans with tissue-specific and fixed uncertainties were compared, based on dose-volume-histogram parameters for both targets and organs-at-risk. Results: The total SPR uncertainties were 7.0% for low-, 1.0% for medium-, and 1.3% for high-density tissues. Differences between the proton plans with tissue-specific and fixed uncertainties were mainly found in the vicinity of the target. Composite uncertainties were found to capture the tissue-specific uncertainties more accurately than the tissue-independent uncertainties. Conclusion: Different SPR uncertainties were found for low-, medium-, and high-density tissues indicating that range margins based on tissue-specific uncertainties may be more exact than the standard approach of using tissue-independent uncertainties. Differences between applying tissue-specific and fixed uncertainties were found, however, a fixed uncertainty might still be sufficient, but with a magnitude that depends on the body region.
RESUMO
BACKGROUND: In respiratory gated radiotherapy, low latency between target motion into and out of the gating window and actual beam-on and beam-off is crucial for the treatment accuracy. However, there is presently a lack of guidelines and accurate methods for gating latency measurements. PURPOSE: To develop a simple and reliable method for gating latency measurements that work across different radiotherapy platforms. METHODS: Gating latencies were measured at a Varian ProBeam (protons, RPM gating system) and TrueBeam (photons, TrueBeam gating system) accelerator. A motion-stage performed 1 cm vertical sinusoidal motion of a marker block that was optically tracked by the gating system. An amplitude gating window was set to cover the posterior half of the motion (0-0.5 cm). Gated beams were delivered to a 5 mm cubic scintillating ZnSe:O crystal that emitted visible light when irradiated, thereby directly showing when the beam was on. During gated beam delivery, a video camera acquired images at 120 Hz of the moving marker block and light-emitting crystal. After treatment, the block position and crystal light intensity were determined in all video frames. Two methods were used to determine the gate-on (τon ) and gate-off (τoff ) latencies. By method 1, the video was synchronized with gating log files by temporal alignment of the same block motion recorded in both the video and the log files. τon was defined as the time from the block entered the gating window (from gating log files) to the actual beam-on as detected by the crystal light. Similarly, τoff was the time from the block exited the gating window to beam-off. By method 2, τon and τoff were found from the videos alone using motion of different sine periods (1-10 s). In each video, a sinusoidal fit of the block motion provided the times Tmin of the lowest block position. The mid-time, Tmid-light , of each beam-on period was determined as the time halfway between crystal light signal start and end. It can be shown that the directly measurable quantity Tmid-light - Tmin = (τoff +τon )/2, which provided the sum (τoff +τon ) of the two latencies. It can also be shown that the beam-on (i.e., crystal light) duration ΔTlight increases linearly with the sine period and depends on τoff - τon : ΔTlight = constantâ¢period+(τoff - τon ). Hence, a linear fit of ΔTlight as a function of the period provided the difference of the two latencies. From the sum (τoff +τon ) and difference (τoff - τon ), the individual latencies were determined. RESULTS: Method 1 resulted in mean (±SD) latencies of τon = 255 ± 33 ms, τoff = 82 ± 15 ms for the ProBeam and τon = 84 ± 13 ms, τoff = 44 ± 11 ms for the TrueBeam. Method 2 resulted in latencies of τon = 255 ± 23 ms, τoff = 95 ± 23 ms for the ProBeam and τon = 83 ± 8 ms, τoff = 46 ± 8 ms for the TrueBeam. Hence, the mean latencies determined by the two methods agreed within 13 ms for the ProBeam and within 2 ms for the TrueBeam. CONCLUSIONS: A novel, simple and low-cost method for gating latency measurements that work across different radiotherapy platforms was demonstrated. Only the TrueBeam fully fulfilled the AAPM TG-142 recommendation of maximum 100 ms latencies.
Assuntos
Fótons , Prótons , Aceleradores de Partículas , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , RespiraçãoRESUMO
Climate change projections indicate more frequent and severe tropical marine heatwaves (MHWs) and accompanying hypoxia year-round. However, most studies have focused on peak summer conditions under the assumption that annual maximum temperatures will induce the greatest physiological consequences. This study challenges this idea by characterizing seasonal MHWs (i.e., mean, maximum, and cumulative intensities, durations, heating rates, and mean annual occurrence) and comparing metabolic traits (i.e., standard metabolic rate (SMR), Q10 of SMR, maximum metabolic rate (MMR), aerobic scope, and critical oxygen tension (Pcrit )) of winter- and summer-acclimatized convict tang (Acanthurus triostegus) to the combined effects of MHWs and hypoxia. Fish were exposed to one of six MHW treatments with seasonally varying maximum intensities (winter: 24.5, 26.5, 28.5°C; summer: 28.5, 30.5, 32.5°C), representing past and future MHWs under IPCC projections (i.e., +0, +2, +4°C). Surprisingly, MHW characteristics did not significantly differ between seasons, yet SMR was more sensitive to winter MHWs (mean Q10 = 2.92) than summer MHWs (mean Q10 = 1.81), despite higher absolute summer temperatures. Concurrently, MMR increased similarly among winter +2 and +4°C treatments (i.e., 26.5, 28.5°C) and all summer MHW treatments, suggesting a ceiling for maximal MMR increase. Aerobic scope did not significantly differ between seasons nor among MHW treatments. While mean Pcrit did not significantly vary between seasons, warming of +4°C during winter (i.e., 28.5°C) significantly increased Pcrit relative to the winter control group. Contrary to the idea of increased sensitivity to MHWs during the warmest time of year, our results reveal heightened sensitivity to the deleterious effects of winter MHWs, and that seasonal acclimatization to warmer summer conditions may bolster metabolic resilience to warming and hypoxia. Consequently, physiological sensitivity to MHWs and hypoxia may extend across larger parts of the year than previously expected, emphasizing the importance of evaluating climate change impacts during cooler seasons when essential fitness-related traits such as reproduction occur in many species.
Assuntos
Recifes de Corais , Peixes , Animais , Estações do Ano , Temperatura Alta , Temperatura , Aclimatação , HipóxiaRESUMO
BACKGROUND: The spatial and temporal dose rate distribution of pencil beam scanning (PBS) proton therapy is important in ultra-high dose rate (UHDR) or FLASH irradiations. Validation of the temporal structure of the dose rate is crucial for quality assurance and may be performed using detectors with high temporal resolution and large dynamic range. PURPOSE: To provide time-resolved in vivo dose rate measurements using a scintillator-based detector during proton PBS pre-clinical mouse experiments with dose rates ranging from conventional to UHDR. METHODS: All irradiations were performed at the entrance plateau of a 250 MeV PBS proton beam. A detector system with four fiber-coupled ZnSe:O inorganic scintillators and 20 µs temporal resolution was used for dose rate measurements. The system was first characterized in terms of precision and stem signal. The detector precision was determined through repeated irradiations with the same field. The stem signal contribution was quantified by irradiating two of the detector probes alongside a bare fiber (fiber without a coupled scintillator). Next, the detector system was calibrated against an ionization chamber (IC) with all four detector probes and the IC placed in a water bath at 2 cm depth. A scan pattern covering 9.6 × 9.6 cm was used. Multiple irradiations with different requested nozzle currents provided instantaneous dose rates at the detector positions in the range of 7-1270 Gy/s. The correspondence of the detector signal (in Volts) to the instantaneous dose rate (in Gy/s) was found. The instantaneous dose rate was calculated from the beam current and the spot-to-detector distance assuming a Gaussian beam profile at distances up to 8 mm from the spot. Afterwards, the calibrated system was used in vivo, in mouse experiments, where mouse legs were irradiated with a constant dose and varying field dose rates of 0.7-87.5 Gy/s. The instantaneous dose rate was measured for each delivered spot and the delivered dose was determined as the integrated instantaneous dose rate. The spot dose profile and PBS dose rate map were calculated. The dose contamination to neighbouring mice were measured together with the upper limit of the dose to the mouse body. RESULTS: The detectors showed high precision with ≤0.4% fluctuations in the measured dose. The stem signal exceeded 10% for spots <5 mm from the optical fiber and >18 mm from the scintillator. It contributed up to 0.2% to the total dose, which was considered negligible. All four detectors showed a non-linear relation between signal and instantaneous dose rate, which was modelled with a polynomial response function. In the mouse experiments, the measured scintillator dose showed 1.8% fluctuations, independent of the field dose rate. The in vivo measured spot dose profile had tails that deviated from a Gaussian profile with measurable dose contributions from spots up to 85 mm from the detector. Neighbour mouse irradiation contributed â¼1% of the total mouse dose. The upper limit of the mouse body dose was 6% of the mouse leg dose. CONCLUSIONS: A fiber-coupled inorganic scintillator-based detector system can provide high precision in vivo measurements of the instantaneous dose rate if correction for the non-linear dose rate dependency is applied.
Assuntos
Terapia com Prótons , Prótons , Radiometria , Dosagem RadioterapêuticaRESUMO
DWI/FLAIR mismatch assessment for ischemic stroke patients shows promising results in determining if patients are eligible for recombinant tissue-type plasminogen activator (r-tPA) treatment. However, the mismatch criteria suffer from two major issues: binary classification of a non-binary problem and the subjectiveness of the assessor. In this article, we present a simple automatic method for segmenting stroke-related parenchymal hyperintensities on FLAIR, allowing for an automatic and continuous DWI/FLAIR mismatch assessment. We further show that our method's segmentations have comparable inter-rater agreement (DICE 0.820, SD 0.12) compared to that of two neuro-radiologists (DICE 0.856, SD 0.07), that our method appears robust to hyper-parameter choices (suggesting good generalizability), and lastly, that our methods continuous DWI/FLAIR mismatch assessment correlates to mismatch assessments made for a cohort of wake-up stroke patients at hospital submission. The proposed method shows promising results in automating the segmentation of parenchymal hyperintensity within ischemic stroke lesions and could help reduce inter-observer variability of DWI/FLAIR mismatch assessment performed in clinical environments as well as offer a continuous assessment instead of the current binary one.
RESUMO
We conducted a systematic review of the current status of machine learning (ML) algorithms' ability to identify multiple brain diseases, and we evaluated their applicability for improving existing scan acquisition and interpretation workflows. PubMed Medline, Ovid Embase, Scopus, Web of Science, and IEEE Xplore literature databases were searched for relevant studies published between January 2017 and February 2022. The quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 tool. The applicability of ML algorithms for successful workflow improvement was qualitatively assessed based on the satisfaction of three clinical requirements. A total of 19 studies were included for qualitative synthesis. The included studies performed classification tasks (n = 12) and segmentation tasks (n = 7). For classification algorithms, the area under the receiver operating characteristic curve (AUC) ranged from 0.765 to 0.997, while accuracy, sensitivity, and specificity ranged from 80% to 100%, 72% to 100%, and 65% to 100%, respectively. For segmentation algorithms, the Dice coefficient ranged from 0.300 to 0.912. No studies satisfied all clinical requirements for successful workflow improvements due to key limitations pertaining to the study's design, study data, reference standards, and performance reporting. Standardized reporting guidelines tailored for ML in radiology, prospective study designs, and multi-site testing could help alleviate this.
RESUMO
PURPOSE: Preclinical studies indicate a normal tissue sparing effect when ultra-high dose rate (FLASH) radiation is used, while tumor response is maintained. This differential response has promising perspectives for improved clinical outcome. This study investigates tumor control and normal tissue toxicity of pencil beam scanning (PBS) proton FLASH in a mouse model. METHODS AND MATERIALS: Tumor bearing hind limbs of non-anaesthetized CDF1 mice were irradiated in a single fraction with a PBS proton beam using either conventional (CONV) dose rate (0.33-0.63 Gy/s field dose rate, 244 MeV) or FLASH (71-89 Gy/s field dose rate, 250 MeV). 162 mice with a C3H mouse mammary carcinoma subcutaneously implanted in the foot were irradiated with physical doses of 40-60 Gy (8-14 mice per dose point). The endpoints were tumor control (TC) assessed as no recurrent tumor at 90 days after treatment, the level of acute moist desquamation (MD) to the skin of the foot within 25 days post irradiation, and radiation induced fibrosis (RIF) within 24 weeks post irradiation. RESULTS: TCD50 (dose for 50% tumor control) was similar for CONV and FLASH with values (and 95% confidence intervals) of 49.1 (47.0-51.4) Gy for CONV and 51.3 (48.6-54.2) Gy for FLASH. RIF analysis was restricted to mice with tumor control. Both endpoints showed distinct normal tissue sparing effect of proton FLASH with MDD50 (dose for 50% of mice displaying moist desquamation) of <40.1 Gy for CONV and 52.3 (50.0-54.6) Gy for FLASH, (dose modifying factor at least 1.3) and FD50 (dose for 50% of mice displaying fibrosis) of 48.6 (43.2-50.8) Gy for CONV and 55.6 (52.5-60.1) Gy for FLASH (dose modifying factor of 1.14). CONCLUSIONS: FLASH had the same tumor control as CONV, but reduced normal tissue damage assessed as acute skin damage and radiation induced fibrosis.