Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Insect Physiol ; 159: 104700, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39255897

RESUMO

Climate-induced shifts in flowering phenology can disrupt pollinator-floral resource synchrony, especially in desert ecosystems where rainfall dictates both. However, baseline metrics to gauge pollinator health in the wild amidst rapid climate change are lacking. Our laboratory-based study establishes a baseline for pollinator physiological state by exploring how osmotic conditions influence survivorship in a desert hawkmoth pollinator, Manduca sexta. We sampled hemolymph osmolality from over 1000 lab-grown moths at 20 %, 50 %, and 80 % ambient humidity levels. Starved moths maintained healthy osmolality of 350-400 mmol/kg for 1-3 days after eclosion regardless of ambient humidity, but it sharply rose to 550 mmol/kg after 4-5 days in low and moderate humidity, and after 5 days in high humidity. Starved moths in low humidity conditions perished within 5 days, while those in high humidity survived twice as long. Moths fed synthetic Datura wrightii nectar, synthetic Agave palmeri nectar, or water, maintained osmolality within a healthy range of 350-400mmol/kg. The same was true for moths fed authentic floral nectars from Datura and Agave plants, although moths consumed more synthetic than authentic nectars, possibly due to non-sugar constituents. Simulating a 4-day mismatch between pollinator emergence and nectar availability, a single nectar meal osmotically rescued moths under dry ambient conditions. Our findings highlight hemolymph osmolality as a rapid and accurate biomarker distinguishing dehydrated from hydrated states in insect pollinators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...