Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
BMC Pulm Med ; 22(1): 357, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127649

RESUMO

INTRODUCTION: Discriminating asthma from chronic obstructive pulmonary disease (COPD) using medico-administrative databases is challenging but necessary for medico-economic analyses focusing on respiratory diseases. Artificial intelligence (AI) may improve dedicated algorithms. OBJECTIVES: To assess performance of different AI-based approaches to distinguish asthmatics from COPD patients in medico-administrative databases where the clinical diagnosis is absent. An "Asthma COPD Overlap" category was defined to further test whether AI can detect complexity. METHODS: This study included 178,962 patients treated by two "R03" treatment prescriptions at least from January 2016 to December 2018 and managed by either a general practitioner and/or a pulmonologist participating in a permanent longitudinal observatory of prescription in ambulatory medicine (LPD). Clinical diagnoses are available in this database and were used as gold standards to develop diagnostic rules. Three types of AI approaches were explored using data restricted to demographics and treatment dispensations: multinomial regression, gradient boosting and recurrent neural networks (RNN). The best performing model (based on metric properties) was then applied to estimate the size of asthma and COPD populations based on a database (LRx) of treatment dispensations between July, 2018 and June, 2019. RESULTS: The best models were obtained with the boosting approach and RNN, with an overall accuracy of 68%. Performance metrics were better for asthma than COPD. Based on LRx data, the extrapolated numbers of patients treated for asthma and COPD in France were 3.7 and 1.2 million, respectively. Asthma patients were younger than COPD patients (mean, 49.9 vs. 72.1 years); COPD occurred mostly in men (68%) compared to asthma (33%). CONCLUSION: AI can provide models with acceptable accuracy to distinguish between asthma, ACO and COPD in medico-administrative databases where the clinical diagnosis is absent. Deep learning and machine learning (RNN) had similar performances in this regard.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Algoritmos , Inteligência Artificial , Asma/tratamento farmacológico , Bases de Dados Factuais , Humanos , Masculino
2.
AIDS ; 34(12): 1771-1774, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32773476

RESUMO

: We performed an observational prospective monocentric study in patients living with HIV (PLWH) diagnosed with COVID-19. Fifty-four PLWH developed COVID-19 with 14 severe (25.9%) and five critical cases (9.3%), respectively. By multivariate analysis, age, male sex, ethnic origin from sub-Saharan Africa and metabolic disorder were associated with severe or critical forms of COVID-19. Prior CD4 T cell counts did not differ between groups. No protective effect of a particular antiretroviral class was observed.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por HIV/complicações , Pneumonia Viral/epidemiologia , Adulto , África Subsaariana/etnologia , Antirretrovirais/uso terapêutico , Contagem de Linfócito CD4 , COVID-19 , Infecções por Coronavirus/etnologia , Feminino , França/epidemiologia , Infecções por HIV/tratamento farmacológico , Humanos , Modelos Logísticos , Masculino , Doenças Metabólicas/complicações , Pessoa de Meia-Idade , Análise Multivariada , Pandemias , Pneumonia Viral/etnologia , Estudos Prospectivos , Medição de Risco , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...