Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(20): 12905-12916, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38721835

RESUMO

For most frequent respiratory viruses, there is an urgent need for a universal influenza vaccine to provide cross-protection against intra- and heterosubtypes. We previously developed an Escherichia coli fusion protein expressed extracellular domain of matrix 2 (M2e) and nucleoprotein, named NM2e, and then combined it with an aluminum adjuvant, forming a universal vaccine. Although NM2e has demonstrated a protective effect against the influenza virus in mice to some extent, further improvement is still needed for the induction of immune responses ensuring adequate cross-protection against influenza. Herein, we fabricated a cationic solid lipid nanoadjuvant using poly(lactic acid) (PLA) and dimethyl-dioctadecyl-ammonium bromide (DDAB) and loaded NM2e to generate an NM2e@DDAB/PLA nanovaccine (Nv). In vitro experiments suggested that bone marrow-derived dendritic cells incubated with Nv exhibited ∼4-fold higher antigen (Ag) uptake than NM2e at 16 h along with efficient activation by NM2e@DDAB/PLA Nv. In vivo experiments revealed that Ag of the Nv group stayed in lymph nodes (LNs) for more than 14 days after initial immunization and DCs in LNs were evidently activated and matured. Furthermore, the Nv primed T and B cells for robust humoral and cellular immune responses after immunization. It also induced a ratio of IgG2a/IgG1 higher than that of NM2e to a considerable extent. Moreover, NM2e@DDAB/PLA Nv quickly restored body weight and improved survival of homo- and heterosubtype influenza challenged mice, and the cross-protection efficiency was over 90%. Collectively, our study demonstrated that NM2e@DDAB/PLA Nv could offer notable protection against homo- and heterosubtype influenza virus challenges, offering the potential for the development of a universal influenza vaccine.


Assuntos
Adjuvantes Imunológicos , Vacinas contra Influenza , Poliésteres , Compostos de Amônio Quaternário , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/administração & dosagem , Animais , Camundongos , Poliésteres/química , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Compostos de Amônio Quaternário/química , Feminino , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Nanopartículas/química , Proteção Cruzada/imunologia , Adjuvantes de Vacinas/química , Proteínas da Matriz Viral/imunologia
2.
ACS Chem Neurosci ; 15(3): 593-607, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38214579

RESUMO

Objective: Schisandrin B (Sch B) is a bioactive dibenzocyclooctadiene derizative that is prevalent in the fruit of Schisandra chinensis. Numerous studies have demonstrated that Sch B has a neuroprotective action by reducing oxidative stress and effectively preventing inflammation. It follows that Sch B is a potential treatment for Alzheimer's disease (AD). However, the drug's solubility, bioavailability, and lower permeability of the blood-brain barrier (BBB) can all reduce its efficacy during the therapy process. Therefore, this study constructed borneol-modified schisandrin B micelles (Bor-Sch B-Ms), which increase brain targeting by accurately delivering medications to the brain, effectively improving bioavailability. High therapeutic efficacy has been achieved at the pathological site. Methods: Bor-Sch B-Ms were prepared using the thin film dispersion approach in this article. On the one hand, to observe the targeting effect of borneol, we constructed a blood-brain barrier (BBB) model in vitro and studied the ability of micelles to cross the BBB. On the other hand, the distribution of micelle drugs and their related pharmacological effects on neuroinflammation, oxidative stress, and neuronal damage were studied through in vivo administration in mice. Results: In vitro studies have demonstrated that the drug uptake of bEnd.3 cells was increased by the borneol alteration on the surface of the nano micelles, implying that Bor-Sch B-Ms can promote the therapeutic effect of N2a cells. This could result in more medicines entering the BBB. In addition, in vivo studies revealed that the distribution and circulation time of medications in the brain tissue were significantly higher than those in other groups, making it more suitable for the treatment of central nervous system diseases. Conclusion: As a novel nanodrug delivery system, borneol modified schisandrin B micelles have promising research prospects in the treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Canfanos , Lignanas , Compostos Policíclicos , Camundongos , Animais , Micelas , Doença de Alzheimer/tratamento farmacológico , Células Endoteliais , Ciclo-Octanos
3.
J Liposome Res ; : 1-37, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38032385

RESUMO

As the aging population continues to increase, aging-related inflammation, oxidative stress, and neurodegenerative diseases have become serious global health threats. Resveratrol, a star molecule in natural polyphenols, has been widely reported to have physiological activities such as anti-aging, anti-inflammatory, antioxidant, and neuroprotection. However, its poor water solubility, rapid metabolism, low bioavailability and poor targeting ability, which limits its application. Accordingly, a brain-targeted resveratrol liposome (ANG-RES-LIP) was developed to solve these issues. Experimental results showed that ANG-RES-LIP has a uniform size distribution, good biocompatibility, and a drug encapsulation rate of over 90%. Furthermore, in vitro cell experiments showed that the modification of the targeting ligand ANG significantly increased the capability of RES to cross the BBB and neuronal uptake. Compared with free RES, ANG-RES-LIP demonstrated stronger antioxidant activity and the ability to rescue oxidatively damaged cells from apoptosis. Additionally, ANG-RES-LIP showed the ability to repair damaged neuronal mitochondrial membrane potential. In vivo experiments further demonstrated that ANG-RES-LIP improved cognitive function by reducing oxidative stress and inflammation levels in the brains of aging model mice, repairing damaged neurons and glial cells, and increasing brain-derived neurotrophic factor. In summary, this study not only provides a new method for further development and application of resveratrol but also a promising strategy for preventing and treating age-related neurodegenerative diseases.

4.
J Drug Target ; 31(6): 634-645, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37203195

RESUMO

The blood-brain barrier (BBB) is a barrier that maintains brain homeostasis, but it is also one of the major problems that must be overcome in the development of Alzheimer's disease (AD) drugs. To solve this problem, Salidroside (Sal) and Icariin (Ica), drugs with neuroprotective effects were loaded into liposomes, and the targeting molecule Angiopep-2 was modified on the surface of liposomes (Ang-Sal/Ica-Lip), so that the constructed nano-drug delivery system could effectively cross the BBB and exert anti-AD effects. The prepared liposomes exhibited ideal physicochemical properties. In vitro and in vivo targeting studies showed that Ang-Sal/Ica liposome could cross the BBB to increase drug accumulation in the brain, and increase the uptake of N2a cells and bEnd.3 cells. The pharmacodynamic analysis in vivo showed that Ang-Sal/Ica liposome could reverse neuronal and synaptic damage, inhibit neuroinflammation and oxidative stress and improve learning and cognitive function. Therefore, Ang-Sal/Ica liposome may be a promising therapeutic strategy for mitigating AD-related symptoms.


Assuntos
Doença de Alzheimer , Lipossomos , Camundongos , Animais , Lipossomos/química , Doença de Alzheimer/tratamento farmacológico , Células Endoteliais , Encéfalo , Barreira Hematoencefálica
5.
Clin Cosmet Investig Dermatol ; 16: 267-278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742263

RESUMO

Introduction: Inflammation generally refers to the body's defensive response to stimuli, and skin inflammation is still one of the major problems that affect human physical and mental health. While current pharmacological treatments are reported to have cytotoxicity and various side effects, herbal medicines with few side effects and low cytotoxicity are considered as alternative therapeutic approaches. Methods: In order to investigate anti-inflammatory effects and mechanisms of ALOE, the potential cytotoxicity of A. vera extracts (ALOE) was determined in vitro at first. The production of the pro-inflammatory proteins (ie, IL-6, TNF-α) in lipopolysaccharides (LPS) and ultraviolet A (UVA)-stimulated HaCaT and RAW264.7 cells were then treated with ALOE to test its inhibitory effects using enzyme-linked immunosorbent assay (ELISA). To further explore the anti-inflammatory mechanisms of ALOE, quantitative Polymerase Chain Reaction (qPCR) was used to analyze the mRNA expression of inflammatory genes iNOS, COX-2 and NO production. For NF-κB and MAPK signaling pathways analysis, Western blotting and nuclear fluorescence staining were used to evaluate the expression of key factors. Results: ALOE did not exhibit obvious cytotoxicity (0-3 mg/mL) in vitro. ALOE was able to inhibit the expression of pro-inflammatory cytokines IL-6, TNF-α and functioned more prominently in LPS-induced model. ALOE could also suppress the mRNA expression of LPS-induced iNOS and COX-2 and further down-regulate NO level. Furthermore, ALOE reduced the protein expression of P65 in NF-κB signaling pathway and suppressed LPS-induced activation of ERK and JNK, instead of p38 MAPK pathway. Conclusion: Taken together, these results demonstrated that ALOE is a potential treatment in suppressing LPS-stimulated inflammation reactions targeting NF-κB, JNK and ERK signaling pathways. The anti-inflammatory effects of ALOE indicated that it has the potential to become an effective cosmetic ingredient.

6.
Drug Des Devel Ther ; 17: 403-418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798807

RESUMO

Purpose: Current chemotherapy fails to offer a desirable efficacy in clinical treatment against breast cancer due to the extensive multi-drug resistance. In this study, we developed dual sensitization anti-resistant nanoparticles to treat refractory breast cancer, aiming to benefit from photodynamic therapy and chemotherapy. Methods: Hyaluronic acid (HA) derivative and photosensitizer chlorin e6 (Ce6) derivative were synthesized and confirmed by mass spectrometry. These derivatives and the chemotherapy agent paclitaxel were incorporated into nanoparticles by an emulsion-solvent evaporation method. The prepared nanoparticles were characterized by dynamic laser scattering, atomic force microscopy, and high performance liquid chromatography (HPLC). The efficacy and mechanisms of the nanoparticles, both in vitro and in vivo, were investigated by flow cytometry, confocal/fluorescence microscopy, and a high-content screening system. Results: The prepared dual sensitization anti-resistant nanoparticles were round with a diameter of ~ 100 nm, exhibiting high encapsulation efficiency for the anticancer agent paclitaxel. The nanoparticles demonstrated a robust inhibitory effect against drug-resistant breast cancer cells by enhanced uptake, synergistic effect of photodynamic therapy and chemotherapy, and apoptosis-inducing via multiple pathways. In vivo efficacy, biocompatibility and safety were further confirmed acceptable in tumor-bearing mice. Conclusion: The prepared dual sensitization anti-resistant nanoparticles were promising to treat refractory breast cancer with a controllable treatment site and minimal side effects.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Porfirinas , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Paclitaxel/farmacologia , Apoptose , Nanopartículas/química , Linhagem Celular Tumoral , Porfirinas/farmacologia , Porfirinas/química
7.
Clin Cosmet Investig Dermatol ; 15: 1959-1967, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159203

RESUMO

Background: Cannabidiol (CBD) is a non-psychoactive phytocannabinoid constituent of Cannabis sativa with pain-relieving and anti-inflammatory properties. With the emphasis on natural ingredients in cosmetics, CBD has become a new cosmetic ingredient due to its ability to alleviate inflammation. However, in-depth studies that directly compare the effective mechanism and the therapeutic potential of CBD are still needed. Purpose: The aim of the present study was to investigate the anti-inflammatory effect of CBD in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and compare it to dexamethasone (DEX). Methods: RAW264.7 macrophages in the logarithmic growth phase were incubated in the presence or absence of LPS. After that, the production of nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were measured. A luciferase reporter assay for nuclear factor kappa B (NF-κB) was performed, and the phosphorylation levels of the mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways were measured. Results: The present study indicated that CBD had a similar anti-inflammatory effect to DEX by attenuating the LPS-induced production of NO, IL-6, and TNF-α. However, only CBD attenuated JNK phosphorylation levels, and only DEX attenuated IKK phosphorylation levels. Conclusion: These results suggested that CBD and DEX exhibit similar anti-inflammatory effects on LPS-induced RAW264.7 macrophages mainly through suppressing the MAPK and NF-κB signaling pathways, but with different intracellular mechanisms. These findings suggested that CBD may be considered a natural anti-inflammatory agent for protecting skin from immune disorders.

8.
Life Sci ; 285: 120013, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34614418

RESUMO

AIMS: Due to poor targeting ability of anti-tumor drugs and self-adaptation of tumors, the chemotherapy of ovarian cancer is still poorly effective. In recent years, the treatment of tumor with nano-targeted agents has become a potential research focus. In this study, a new type of short cell-penetrating peptide RPV-modified paclitaxel plus schisandrin B liposomes were constructed to disrupt VM channels, angiogenesis, proliferation and migration for the treatment of ovarian cancer. MATERIALS AND METHODS: In this study, clone assay, TUNEL, Transwell, wound-healing, CAM and mimics assay were used to detect the effects of RPV-modified liposomes on ovarian cancer SK-OV-3 cells before and after treatment. HE-staining, immunofluorescence and ELISA were used to further detect the expression of tumor-related proteins. KEY FINDINGS: RPV-modified paclitaxel plus schisandrin B liposomes can inhibit angiogenesis, VM channel formation, invasion and proliferation of ovarian SK-OV-3 cells. In vitro and in vivo studies showed that tumor-related protein expression was down-regulated. Modification of RPV can prolong the retention time of liposome in vivo and accumulate in the tumor site, increasing the anti-tumor efficacy. SIGNIFICANCE: The RPV-modified paclitaxel plus schisandrin B liposomes have good anti-tumor effect, thus may provide a new avenue for the treatment of ovarian cancer.


Assuntos
Antineoplásicos/administração & dosagem , Peptídeos Penetradores de Células , Lignanas/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/administração & dosagem , Compostos Policíclicos/administração & dosagem , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Ciclo-Octanos/administração & dosagem , Ciclo-Octanos/química , Feminino , Humanos , Lignanas/química , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel/química , Compostos Policíclicos/química , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Theranostics ; 11(6): 2892-2916, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33456579

RESUMO

Background: Among the many immunosuppressive cells in the tumor microenvironment, tumor-associated-macrophages (TAMs) are well known to contribute to tumor development. TAMs can be conditioned (polarized) to transition between classical M1-like macrophages, or alternatively to M2-like macrophages. Both are regulated by signaling molecules in the microenvironment. M1-like TAMs can secrete classic inflammatory cytokines that kill tumors by promoting tumor cell necrosis and immune cell infiltration into the tumor microenvironment. In contrast, M2-like TAMs exhibit powerful tumor-promoting functions, including degradation of tumor extracellular matrix, destruction of basement membrane, promotion of angiogenesis, and recruitment of immunosuppressor cells, all of which further promote tumor progression and distal metastasis. Therefore, remodeling the tumor microenvironment by reversing the TAM phenotype will be favorable for tumor therapy, especially immunotherapy. Methods: PLGA nanoparticles encapsulating baicalin and melanoma antigen Hgp peptide fragment 25-33 were fabricated using the ultrasonic double-emulsion technique. The nanoparticles were further loaded with CpG fragments and used conjugated M2pep and α-pep peptides on their surfaces to produce novel nano-complexes. The capability to target M2-like TAMs and anti-tumor immunotherapy effects of nano-complexes were evaluated by flow cytometry and confocal microscopy in vitro. We also investigated the survival and histopathology of murine melanoma models administrated with different nanocomplexes. Improvements in the tumor microenvironment for immune attack of melanoma-bearing mice were also assessed. Results: The nano-complexes were effectively ingested by M2-like TAMs in vitro and in vivo, and the acidic lysosomal environment triggered the disintegration of polydopamine from the nanoparticle surface, which resulted in the release of the payloads. The released CpG played an important role in transforming the M2-like TAMs into the M1-like phenotype that further secreted inflammatory cytokines. The reversal of TAM released cytokines and gradually suppressed tumor angiogenesis, permitting the remodeling of the tumor microenvironment. Moreover, the activated TAMs also presented antigen to T cells, which further stimulated the antitumor immune response that inhibited tumor metastasis. Activated T cells released cytokines, which stimulated NK cell infiltration and directly resulted in killing tumor cells. The baicalin released by M1-like TAMs also killed tumor cells. Conclusion: The nano-complexes facilitated baicalin, antigen, and immunostimulant delivery to M2-like TAMs, which polarized and reversed the M2-like TAM phenotype and remodeled the tumor microenvironment to allow killing of tumor cells.


Assuntos
Melanoma/tratamento farmacológico , Nanopartículas/administração & dosagem , Microambiente Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Citocinas/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Flavonoides/farmacologia , Imunoterapia/métodos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Peptídeos/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Macrófagos Associados a Tumor/metabolismo
10.
J Liposome Res ; 31(2): 113-129, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32200703

RESUMO

Non-small cell lung cancer (NSCLC) is a malignant cancer characterized by easy invasion, metastasis and poor prognosis, so that conventional chemotherapy cannot inhibit its invasion and metastasis. Doxorubicin (DOX), as a broad-spectrum antitumour drug, cannot be widely used in clinic because of its poor targeting, short half-life, strong toxicity and side effects. Therefore, the aim of our study is to construct a kind of PFV modified DOX plus schisandrin B liposomes to solve the above problems, and to explore its potential mechanism of inhibiting NSCLC invasion and metastasis. The antitumour efficiency of the targeting liposomes was carried out by cytotoxicity, heating ablation, wound healing, transwell, vasculogenic mimicry channels formation and metastasis-related protein tests in vitro. Pharmacodynamics were evaluated by tumour inhibition rate, HE staining and TUNEL test in vivo. The enhanced anti-metastatic mechanism of the targeting liposomes was attributed to the downregulation of vimentin, vascular endothelial growth factor, matrix metalloproteinase 9 and upregulation of E-cadherin. In conclusion, the PFV modified DOX plus schisandrin B liposomes prepared in this study provided a treatment strategy with high efficiency for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Linhagem Celular Tumoral , Ciclo-Octanos , Doxorrubicina/farmacologia , Transição Epitelial-Mesenquimal , Humanos , Lignanas , Lipossomos , Neoplasias Pulmonares/tratamento farmacológico , Compostos Policíclicos , Fator A de Crescimento do Endotélio Vascular
11.
J Liposome Res ; 31(3): 267-278, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32757676

RESUMO

Osthole (Ost) is a coumarin compound and a potential drug for Alzheimer's disease (AD). However, the effectiveness of Ost is limited by solubility, bioavailability, and low permeability of the blood-brain barrier. In this study, we constructed Ost liposomes with modified CXCR4 on the surface (CXCR4-Ost-Lips), and investigated the intracellular distribution of liposomes in APP-SH-SY5Y cells. In addition, the neuroprotective effect of CXCR4-Ost-Lips was examined in vitro and in vivo. The results showed that CXCR4-Ost-Lips increased intracellular uptake by APP-SH-SY5Y cells and exerted a cytoprotective effect in vitro. The results of Ost brain distribution showed that CXCR4-Ost-Lips prolonged the cycle time of mice and increased the accumulation of Ost in the brain. In addition, CXCR4-Ost-Lips enhanced the effect of Ost in relieving AD-related pathologies. These results indicate that CXCR4-modified liposomes are a potential Ost carrier to treat AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Animais , Encéfalo , Cumarínicos , Lipossomos , Camundongos
12.
Int J Nanomedicine ; 15: 6451-6468, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922011

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is one of the most lethal types of cancer with highly infiltrating. Chemotherapy is far from satisfactory, vasculogenic mimicry (VM) and angiogenesis results in invasion, migration and relapse. PURPOSE: The objective of this study was to construct a novel CPP (mmp) modified vinorelbine and dioscin liposomes by two new functional materials, DSPE-PEG2000-MAL and CPP-PVGLIG-PEG5000, to destroy VM channels, angiogenesis, EMT and inhibit invasion and migration. METHODS AND RESULTS: The targeting liposomes could be enriched in tumor sites through passive targeting, and the positively charged CPP was exposed and enhanced active targeting via electrostatic adsorption after being hydrolyzed by MMP2 enzymes overexpressed in the tumor microenvironment. We found that CPP (mmp) modified vinorelbine and dioscin liposomes with the ideal physicochemical properties and exhibited enhanced cellular uptake. In vitro and in vivo results showed that CPP (mmp) modified vinorelbine and dioscin liposomes could inhibit migration and invasion of A549 cells, destroy VM channels formation and angiogenesis, and block the EMT process. Pharmacodynamic studies showed that the targeting liposomes had obvious accumulations in tumor sites and magnificent antitumor efficiency. CONCLUSION: CPP (mmp) modified vinorelbine plus dioscin liposomes could provide a new strategy for NSCLC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Microambiente Tumoral , Células A549 , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Galinhas , Endocitose/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Hidrólise , Lipossomos , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Microambiente Tumoral/efeitos dos fármacos , Vinorelbina/farmacologia , Vinorelbina/uso terapêutico
13.
J Drug Target ; 28(10): 1071-1084, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32484364

RESUMO

Gastric cancer is a malignant tumour characterised by the uncontrolled cell growth. The incidence and mortality of gastric cancer remain high for the invasion and metastasis. We are urgently seeking a risk-free and effective treatment strategy for gastric cancer. In this study, paclitaxel and tetrandrine were encapsulated in the inner core of micelles, and DSPE-PEG2000-CPP and HA were modified on the micellar surface. HA/CPP modified paclitaxel plus tetrandrine micelles had a suitable particle size (90 nm) for permeating tumour tissue. The zeta potential of the targeting micelles was 8.37 mV after hydrolysis by HAase solution. Results of in vitro experiments indicated that HA/CPP modified paclitaxel plus tetrandrine micelles + HAase could enhance the intracellular uptake, inhibit the formation of neovascularization, block the process of EMT and destroy the invasion and metastasis. In vivo assays indicated that HA/CPP modified paclitaxel plus tetrandrine micelles could be selectively accumulated into tumour sites and exhibited the strong antitumor activity with negligible toxicity. These results suggested that HA/CPP modified paclitaxel plus tetrandrine micelles might provide a new strategy for treating gastric cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Benzilisoquinolinas/farmacologia , Micelas , Paclitaxel/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Benzilisoquinolinas/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Combinação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel/administração & dosagem , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Propriedades de Superfície
14.
Drug Dev Ind Pharm ; 46(6): 916-930, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32362146

RESUMO

Tumor invasion and metastasis are the nodus of anti-tumor. Epithelial cell-mesenchymal transition is widely regarded as one of the key steps in the invasion and metastasis of breast cancer. In this study, GGP modified daunorubicin plus dioscin liposomes are constructed and characterized. GGP modified daunorubicin plus dioscin liposome has suitable particle size, narrow PDI, zeta potential of about -5 mV, long cycle effect, and enhanced cell uptake due to surface modification of GGP making the liposome could enter the inside of the tumor to fully exert its anti-tumor effect. The results of in vitro experiments show that the liposome has superior killing effect on tumor cells and invasion. In vivo results indicate that the liposome prolongs the drug's prolonged time in the body and accumulates at the tumor site with little systemic toxicity. In short, the targeted liposome can effectively inhibit tumor invasion and may provide a new strategy for the treatment of invasive breast cancer.


Assuntos
Neoplasias da Mama , Daunorrubicina/química , Diosgenina/análogos & derivados , Transição Epitelial-Mesenquimal , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Diosgenina/química , Humanos , Lipossomos
15.
Int J Nanomedicine ; 15: 2841-2858, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425521

RESUMO

INTRODUCTION: Osthole (Ost) is a coumarin compound that strengthens hippocampal neurons and neural stem cells against Aß oligomer-induced neurotoxicity in mice, and is a potential drug for the treatment of Alzheimer's disease (AD). However, the effectiveness of the drug is limited by its solubility and bioavailability, as well as by the low permeability of the blood-brain barrier (BBB). In this study, a kind of transferrin-modified Ost liposomes (Tf-Ost-Lip) was constructed, which could improve the bioavailability and enhance brain targeting. METHODS: Tf-Ost-Lip was prepared by thin-film hydration method. The ability of liposomal formulations to translocate across BBB was investigated using in vitro BBB model. And the protective effect of Tf-Ost-Lip was evaluated in APP-SH-SY5Y cells. In addition, we performed pharmacokinetics study and brain tissue distribution analysis of liposomal formulations in vivo. We also observed the neuroprotective effect of the varying formulations in APP/PS-1 mice. RESULTS: In vitro studies reveal that Tf-Ost-Lip could increase the intracellular uptake of hCMEC/D3 cells and APP-SH-SY5Y cells, and increase the drug concentration across the BBB. Additionally, Tf-Ost-Lip was found to exert a protective effect on APP-SH-SY5Y cells. In vivo studies of pharmacokinetics and the Ost distribution in brain tissue indicate that Tf-Ost-Lip prolonged the cycle time in mice and increased the accumulation of Ost in the brain. Furthermore, Tf-Ost-Lip was also found to enhance the effect of Ost on the alleviation of Alzheimer's disease-related pathology. CONCLUSION: Transferrin-modified liposomes for delivery of Ost has great potential for AD treatment.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Barreira Hematoencefálica/efeitos dos fármacos , Cumarínicos/farmacologia , Lipossomos/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/patologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Linhagem Celular , Cumarínicos/química , Cumarínicos/farmacocinética , Humanos , Lipossomos/química , Lipossomos/farmacocinética , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacocinética , Polietilenoglicóis/química , Presenilina-1/genética , Ratos Sprague-Dawley , Distribuição Tecidual , Transferrina/química
16.
J Nanosci Nanotechnol ; 20(9): 5693-5702, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32331161

RESUMO

The refractive indexes of three ionic liquids, glutamic acid tetrafluoroborate ([GA]BF4), glutamic acid double trifluoromethyl sulfonyl amine salts ([GA]TF2N), glutamic acid hexafluorophosphate ([GA]PF6), with ethanol and/or water systems under 10~35 °C were studied. The excessive refractive index of the systems and the relationship between the refractive index and the constituent molar fraction at 20 °C, and the empirical relationship between the excess refractive rate and the constituent mole fraction were established. The experimental results show that the excess refractive index is positive in the measured concentration range, and the refractive index of ethanol+water with the increase in the composition appears maximum and the refractive index of ethanol/water+ [GA]BF4, ethanol/water+[GA]PF6, ethanol/water+[GA]TF2N system is increased with the increase in composition. By using the Redlich-Kister equation to correlate the binary system and the excess refractive index of ternary system, the fitting results show that the refractive index of ternary system can be estimated using the refractive index of the polynomial equation of binary system.


Assuntos
Líquidos Iônicos , Aminas , Aminoácidos , Etanol , Refratometria , Água
17.
J Drug Target ; 28(3): 245-258, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31462111

RESUMO

Conventional treatment fails to completely eliminate highly invasive breast cancer cells, and most surviving breast cancer cells tend to reproliferate and metastasize by forming vasculogenic mimicry (VM) channels. Thus, a type of targeted liposomes was developed by modification with arginine8-glycine-aspartic acid (R8GD) to encapsulate daunorubicin and emodin separately. A combination of the two targeted liposomes was then developed to destroy VM channels and inhibit tumour metastasis. MDA-MB-435S cells, a highly invasive breast cancer, were then evaluated in vitro and in mice. The experiments indicated that R8GD modified daunorubicin liposomes plus R8GD modified emodin liposomes had small particle size, uniform particle size distribution and high drug encapsulation rate. The combination of the two targeted liposomes exerted strong toxicity on the MDA-MB-435S cells and effectively inhibited the formation of VM channels and the metastasis of tumour cells. Action mechanism studies showed that the R8GD modified daunorubicin liposomes plus R8GD modified emodin liposomes could downregulate some metastasis-related proteins, including MMP-2, VE-cad, TGF-ß1 and HIF-1α. These studies also demonstrated that the targeted liposomes allowed the chemotherapeutic drug to selectively accumulate at tumour site, thus exhibiting a distinct antitumor effect. Therefore, the combination of targeted daunorubicin liposomes and targeted emodin liposomes can provide a potential treatment for invasive breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/patologia , Daunorrubicina/administração & dosagem , Emodina/administração & dosagem , Feminino , Humanos , Lipossomos , Camundongos , Invasividade Neoplásica , Tamanho da Partícula
18.
J Nanosci Nanotechnol ; 20(3): 1845-1850, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492351

RESUMO

In this paper, we present a fast and green method to prepare Li0.44MnO2 nanorods by Li/Na ion exchange of Na0.44MnO2 templates. XRD and SEM confirm that the products still maintain the crystal and geometric structure of Na0.44MnO2 temples. Electrochemical tests show the capacity of Li0.44MnO2 nanorods is up to 218 mAh · g-1 at the current density of 0.1 A · g-1. Especially, the capacity of electrode is still located at 90 mAh · g-1 at the current density of 5.0 A· g-1 after cycling for 100 times. So Li0.44MnO2 nanorods have a potential application in the next generation of advanced batteries.

19.
Cancer Sci ; 111(2): 621-636, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31777993

RESUMO

Chemotherapy for non-small cell lung cancer (NSCLC) is far from satisfactory, mainly due to poor targeting of antitumor drugs and self-adaptations of the tumors. Angiogenesis, vasculogenic mimicry (VM) channels, migration, and invasion are the main ways for tumors to obtain nutrition. Herein, RPV-modified epirubicin and dioscin co-delivery liposomes were successfully prepared. These liposomes showed ideal physicochemical properties, enhanced tumor targeting and accumulation in tumor sites, and inhibited VM channel formation, tumor angiogenesis, migration and invasion. The liposomes also downregulated VM-related and angiogenesis-related proteins in vitro. Furthermore, when tested in vivo, the targeted co-delivery liposomes increased selective accumulation of drugs in tumor sites and showed extended stability in blood circulation. In conclusion, RPV-modified epirubicin and dioscin co-delivery liposomes showed strong antitumor efficacy in vivo and could thus be considered a promising strategy for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Peptídeos Penetradores de Células/química , Diosgenina/análogos & derivados , Epirubicina/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Células A549 , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diosgenina/administração & dosagem , Diosgenina/química , Diosgenina/farmacologia , Epirubicina/química , Epirubicina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lipossomos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nanoscale ; 11(42): 20206-20220, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31621735

RESUMO

Immunosuppression and immune tolerance lead tumor cells to evade immune system surveillance and weaken drug efficacy. The presence of various immunosuppressive cells in the tumor microenvironment, especially tumor-associated macrophages (TAMs), has been shown to be a driving force in tumor initiation and development. Reversion of the TAM phenotype is an effective way to induce a subsequent antitumor immune response. In this study, we developed baicalin-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles containing an antigenic peptide (Hgp 10025-33, Hgp) and a toll-like receptor 9 agonist (CpG). The nanoparticles were further coated with a galactose-inserted erythrocyte membrane, which actively targeted the TAMs. The TAM polarization and tumor treatment effectiveness of the nanoparticles were evaluated. The biomimetic nanoparticles showed enhanced cell uptake in vitro and targeted effects in vivo. In addition, compared with baicalin-loaded PLGA-NPs (B@NPs), the biomimetic nanoparticles, such as Hgp/B@NPs-CpG and NPs@RBC-Gala, significantly polarized the TAMs such that they changed from the M2 type to the M1 type both in vitro and in vivo. Subsequently, the infiltration of CD4+ T and CD8+ T cells into tumor sites after being induced by the biomimetic nanoparticles was greatly increased, which suggested a significant enhancement of the immune activation effect and T cell response. In addition, the activation of the T cells and induction of the CTL responses effectively suppressed melanoma tumor growth in vivo. In conclusion, the biomimetic nanoparticles effectively reversed the TAM phenotype from M2 to M1, which further improved the tumor immune microenvironment and promoted tumor immunotherapy. These results suggested that the TAM-targeted biomimetic drug delivery system had the potential to reverse the phenotypes of TAMs contributing to reverse the immunosuppressive tumor microenvironment and promote tumor treatment.


Assuntos
Materiais Biomiméticos , Flavonoides , Imunidade Celular/efeitos dos fármacos , Macrófagos , Melanoma Experimental , Nanopartículas/química , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Feminino , Flavonoides/química , Flavonoides/farmacologia , Macrófagos/imunologia , Macrófagos/patologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Antígenos Específicos de Melanoma/química , Antígenos Específicos de Melanoma/farmacologia , Camundongos , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...