Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 13(5): 1186-1209, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36811466

RESUMO

Tumor heterogeneity is a major barrier to cancer therapy, including immunotherapy. Activated T cells can efficiently kill tumor cells following recognition of MHC class I (MHC-I)-bound peptides, but this selection pressure favors outgrowth of MHC-I-deficient tumor cells. We performed a genome-scale screen to discover alternative pathways for T cell-mediated killing of MHC-I-deficient tumor cells. Autophagy and TNF signaling emerged as top pathways, and inactivation of Rnf31 (TNF signaling) and Atg5 (autophagy) sensitized MHC-I-deficient tumor cells to apoptosis by T cell-derived cytokines. Mechanistic studies demonstrated that inhibition of autophagy amplified proapoptotic effects of cytokines in tumor cells. Antigens from apoptotic MHC-I-deficient tumor cells were efficiently cross-presented by dendritic cells, resulting in heightened tumor infiltration by IFNγ-and TNFα-producing T cells. Tumors with a substantial population of MHC-I-deficient cancer cells could be controlled by T cells when both pathways were targeted using genetic or pharmacologic approaches. SIGNIFICANCE: Tumor heterogeneity is a major barrier to immunotherapy. We show that MHC-I-deficient tumor cells are forced into apoptosis by T cell-derived cytokines when TNF signaling and autophagy pathways are targeted. This approach enables T cell-mediated elimination of tumors with a substantial population of resistant, MHC-I-deficient tumor cells. This article is highlighted in the In This Issue feature, p. 1027.


Assuntos
Neoplasias , Linfócitos T , Humanos , Citocinas , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias/genética , Neoplasias/terapia , Genes MHC Classe I
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...