Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Cheminform ; 16(1): 63, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38831351

RESUMO

Drug discovery is an intricate and costly process. Repurposing existing drugs and active compounds offers a viable pathway to develop new therapies for various diseases. By leveraging publicly available biomedical information, it is possible to predict compounds' activity and identify their potential targets across diverse organisms. In this study, we aimed to assess the antiplasmodial activity of compounds from the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) library using in vitro and bioinformatics approaches. We assessed the in vitro antiplasmodial activity of the compounds using blood-stage and liver-stage drug susceptibility assays. We used protein sequences of known targets of the ReFRAME compounds with high antiplasmodial activity (EC50 < 10 uM) to conduct a protein-pairwise search to identify similar Plasmodium falciparum 3D7 proteins (from PlasmoDB) using NCBI protein BLAST. We further assessed the association between the compounds' in vitro antiplasmodial activity and level of similarity between their known and predicted P. falciparum target proteins using simple linear regression analyses. BLAST analyses revealed 735 P. falciparum proteins that were similar to the 226 known protein targets associated with the ReFRAME compounds. Antiplasmodial activity of the compounds was positively associated with the degree of similarity between the compounds' known targets and predicted P. falciparum protein targets (percentage identity, E value, and bit score), the number of the predicted P. falciparum targets, and their respective mutagenesis index and fitness scores (R2 between 0.066 and 0.92, P < 0.05). Compounds predicted to target essential P. falciparum proteins or those with a druggability index of 1 showed the highest antiplasmodial activity.

2.
PLoS One ; 19(6): e0298585, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38900782

RESUMO

Single nucleotide polymorphisms (SNPs) in the Plasmodium falciparum multi-drug resistance protein 1 (Pfmrp1) gene have previously been reported to confer resistance to Artemisinin-based Combination Therapies (ACTs) in Southeast Asia. A total of 300 samples collected from six sites between 2008 and 2019 under an ongoing malaria drug sensitivity patterns in Kenya study were evaluated for the presence of SNPs at Pfmrp1 gene codons: H191Y, S437A, I876V, and F1390I using the Agena MassARRAY® platform. Each isolate was further tested against artemisinin (ART), lumefantrine (LU), amodiaquine (AQ), mefloquine (MQ), quinine (QN), and chloroquine (CQ) using malaria the SYBR Green I-based method to determine their in vitro drug sensitivity. Of the samples genotyped, polymorphism at Pfmrp1 codon I876V was the most frequent, with 59.3% (163/275) mutants, followed by F1390I, 7.2% (20/278), H191Y, 4.0% (6/151), and S437A, 3.3% (9/274). A significant decrease in median 50% inhibition concentrations (IC50s) and interquartile range (IQR) was noted; AQ from 2.996 ng/ml [IQR = 2.604-4.747, n = 51] in 2008 to 1.495 ng/ml [IQR = 0.7134-3.318, n = 40] (P<0.001) in 2019, QN from 59.64 ng/ml [IQR = 29.88-80.89, n = 51] in 2008 to 18.10 ng/ml [IQR = 11.81-26.92, n = 42] (P<0.001) in 2019, CQ from 35.19 ng/ml [IQR = 16.99-71.20, n = 30] in 2008 to 6.699 ng/ml [IQR = 4.976-9.875, n = 37] (P<0.001) in 2019, and ART from 2.680 ng/ml [IQR = 1.608-4.857, n = 57] in 2008 to 2.105 ng/ml [IQR = 1.266-3.267, n = 47] (P = 0.0012) in 2019, implying increasing parasite sensitivity to the drugs over time. However, no significant variations were observed in LU (P = 0.2692) and MQ (P = 0.0939) respectively, suggesting stable parasite responses over time. There was no statistical significance between the mutation at 876 and parasite sensitivity to selected antimalarials tested, suggesting stable sensitivity for the parasites with 876V mutations. These findings show that Kenyan parasite strains are still sensitive to AQ, QN, CQ, ART, LU, and MQ. Despite the presence of Pfmrp1 mutations in parasites among the population.


Assuntos
Antimaláricos , Combinação Arteméter e Lumefantrina , Malária Falciparum , Plasmodium falciparum , Polimorfismo de Nucleotídeo Único , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Humanos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Quênia , Mefloquina/farmacologia , Mefloquina/uso terapêutico , Amodiaquina/farmacologia , Amodiaquina/uso terapêutico , Resistência a Medicamentos/genética , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Quinina/farmacologia , Quinina/uso terapêutico , Masculino , Feminino
3.
Lancet Microbe ; 5(7): 669-678, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761813

RESUMO

BACKGROUND: Mutations in the Plasmodium falciparum dhfr gene confer resistance to pyrimethamine, which is widely used for malaria chemoprevention in Africa. We aimed to evaluate the frequency and evolution of dhfr mutations in Plasmodium ovale spp in Africa and their functional consequences, which are incompletely characterised. METHODS: We analysed dhfr mutations and their frequencies in P ovale spp isolates collected between Feb 1, 2004, and Aug 31, 2023, from the French National Malaria Reference Centre collection and from field studies in Benin, Gabon, and Kenya. Genetic patterns of positive selection were investigated. Full-length recombinant wild-type and mutant DHFR enzymes from both P ovale curtisi and P ovale wallikeri were expressed in bacteria to test whether the most common mutations reduced pyrimethamine susceptibility. FINDINGS: We included 518 P ovale spp samples (314 P ovale curtisi and 204 P ovale wallikeri). In P ovale curtisi, Ala15Ser-Ser58Arg was the most common dhfr mutation (39%; 124 of 314 samples). In P ovale wallikeri, dhfr mutations were less frequent, with Phe57Leu-Ser58Arg reaching 17% (34 of 204 samples). These two mutants were the most prevalent in central and east Africa and were fixed in Kenyan isolates. We detected six and four other non-synonymous mutations, representing 8% (24 isolates) and 2% (five isolates) of the P ovale curtisi and P ovale wallikeri isolates, respectively. Whole-genome sequencing and microsatellite analyses revealed reduced genetic diversity around the mutant pocdhfr and powdhfr genes. The mutant DHFR proteins showed structural changes at the pyrimethamine binding site in-silico, confirmed by a 4-times increase in pyrimethamine half-maximal inhibitory concentration in an Escherichia coli growth assay for the Phe57Leu-Ser58Arg mutant and 50-times increase for the Ala15Ser-Ser58Arg mutant, compared with the wild-type counterparts. INTERPRETATION: The widespread use of sulfadoxine-pyrimethamine for malaria chemoprevention might have exerted fortuitous selection pressure for dhfr mutations in P ovale spp. This calls for closer monitoring of dhfr and dhps mutations in P ovale spp. FUNDING: French Ministry of Health, Agence Nationale de la Recherche, and Global Emerging Infections Surveillance branch of the Armed Forces Health Surveillance Division.


Assuntos
Antimaláricos , Resistência a Medicamentos , Malária , Mutação , Plasmodium ovale , Pirimetamina , Tetra-Hidrofolato Desidrogenase , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Resistência a Medicamentos/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium ovale/genética , Plasmodium ovale/efeitos dos fármacos , Humanos , Malária/epidemiologia , Estudos Retrospectivos , África Subsaariana/epidemiologia , Proteínas de Protozoários/genética , Quênia/epidemiologia
4.
Biochem Biophys Rep ; 37: 101596, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38146350

RESUMO

The molecular mechanism underlying Plasmodium falciparum's persistence in the asymptomatic phase of infection remains largely unknown. However, large-scale shifts in the parasites' gene expression during asymptomatic infections may enhance phenotypic plasticity, maximizing their fitness and leading to the persistence of the asymptomatic infections. To uncover these mechanisms, we aimed to identify parasite genetic factors implicated in asymptomatic infections through whole transcriptome analysis. We analyzed publicly available transcriptome datasets containing asymptomatic malaria (ASM), uncomplicated malaria (SM), and malaria-naïve (NSM) samples from 35 subjects for differentially expressed genes (DEGs) and long noncoding RNAs. Our analysis identified 755 and 1773 DEGs in ASM vs SM and NSM, respectively. These DEGs revealed sets of genes coding for proteins of unknown functions (PUFs) upregulated in ASM vs SM and ASM, suggesting their role in underlying fundamental molecular mechanisms during asymptomatic infections. Upregulated genes in ASM vs SM revealed a subset of 24 clonal variant genes (CVGs) involved in host-parasite and symbiotic interactions and modulation of the symbiont of host erythrocyte aggregation pathways. Moreover, we identified 237 differentially expressed noncoding RNAs in ASM vs SM, of which 11 were found to interact with CVGs, suggesting their possible role in regulating the expression of CVGs. Our results suggest that P. falciparum utilizes phenotypic plasticity as an adaptive mechanism during asymptomatic infections by upregulating clonal variant genes, with long noncoding RNAs possibly playing a crucial role in their regulation. Thus, our study provides insights into the parasites' genetic factors that confer a fitness advantage during asymptomatic infections.

5.
Int J Infect Dis ; 137: 82-89, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37788741

RESUMO

OBJECTIVES: HIV and malaria coinfection impacts disease management and clinical outcomes. This study investigated hematologic abnormalities in malaria-asymptomatic people living with HIV (PLHIV) in regions with differing malaria transmission. METHODS: Study participants were enrolled in the African Cohort Study: two sites in Kenya, one in Uganda, and one in Nigeria. Data was collected at enrollment and every 6 months. Logistic regression estimated odds ratios for associations between HIV/malaria status and anemia, thrombocytopenia, and leucopenia. RESULTS: Samples from 1587 participants with one or more visits comprising 1471 (92.7%) from PLHIV and 116 (7.3%) without HIV were analyzed. Parasite point prevalence significantly differed across the study sites (P <0.001). PLHIV had higher odds of anemia, with males at lower odds compared to females; the odds of anemia decreased with age, reaching significance in those ≥50 years old. Participants in Kisumu, Kenya had higher odds of anemia compared to other sites. PLHIV had higher odds of leucopenia, but malaria co-infection was not associated with worsened leucopenia. The odds of thrombocytopenia were decreased in HIV/malaria co-infection compared to the uninfected group. CONCLUSION: Hematological parameters are important indicators of health and disease. In PLHIV with asymptomatic malaria co-infection enrolled across four geographic sites in three African countries, abnormalities in hematologic parameters differ in different malaria transmission settings and are region-specific.


Assuntos
Anemia , Coinfecção , Infecções por HIV , Malária , Trombocitopenia , Masculino , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Estudos de Coortes , Coinfecção/epidemiologia , Coinfecção/complicações , Malária/complicações , Malária/epidemiologia , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Anemia/epidemiologia , Infecções Assintomáticas/epidemiologia , Quênia/epidemiologia , Prevalência
6.
Malar J ; 22(1): 161, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37208735

RESUMO

BACKGROUND: The unmet demand for effective malaria transmission-blocking agents targeting the transmissible stages of Plasmodium necessitates intensive discovery efforts. In this study, a bioactive bisbenzylisoquinoline (BBIQ), isoliensinine, from Cissampelos pariera (Menispermaceae) rhizomes was identified and characterized for its anti-malarial activity. METHODS: Malaria SYBR Green I fluorescence assay was performed to evaluate the in vitro antimalarial activity against D6, Dd2, and F32-ART5 clones, and immediate ex vivo (IEV) susceptibility for 10 freshly collected P. falciparum isolates. To determine the speed- and stage-of-action of isoliensinine, an IC50 speed assay and morphological analyses were performed using synchronized Dd2 asexuals. Gametocytocidal activity against two culture-adapted gametocyte-producing clinical isolates was determined using microscopy readouts, with possible molecular targets and their binding affinities deduced in silico. RESULTS: Isoliensinine displayed a potent in vitro gametocytocidal activity at mean IC50gam values ranging between 0.41 and 0.69 µM for Plasmodium falciparum clinical isolates. The BBIQ compound also inhibited asexual replication at mean IC50Asexual of 2.17 µM, 2.22 µM, and 2.39 µM for D6, Dd2 and F32-ART5 respectively, targeting the late-trophozoite to schizont transition. Further characterization demonstrated a considerable immediate ex vivo potency against human clinical isolates at a geometric mean IC50IEV = 1.433 µM (95% CI 0.917-2.242). In silico analyses postulated a probable anti-malarial mechanism of action by high binding affinities for four mitotic division protein kinases; Pfnek1, Pfmap2, Pfclk1, and Pfclk4. Additionally, isoliensinine was predicted to possess an optimal pharmacokinetics profile and drug-likeness properties. CONCLUSION: These findings highlight considerable grounds for further exploration of isoliensinine as an amenable scaffold for malaria transmission-blocking chemistry and target validation.


Assuntos
Antimaláricos , Cissampelos , Malária Falciparum , Malária , Humanos , Antimaláricos/química , Plasmodium falciparum , Rizoma
7.
Int J Infect Dis ; 132: 17-25, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37061211

RESUMO

OBJECTIVES: This study examined the treatment response of mixed vs single-species Plasmodium falciparum infections to artemisinin-based combination therapies (ACTs). METHODS: A total of 1211 blood samples collected on days 0, 7, 14, 21, 28, 35, and 42 from 173 individuals enrolled in two randomized ACT efficacy studies were tested for malaria using 18s ribosomal RNA-based real-time polymerase chain reaction. All recurrent parasitemia were characterized for Plasmodium species composition and time to reinfection during 42-day follow-up compared across ACTs. RESULTS: Day 0 samples had 71.1% (116/163) single P. falciparum infections and 28.2% (46/163) coinfections. A total of 54.0% (88/163) of individuals tested positive for Plasmodium at least once between days 7-42. A total of 19.3% (17/88) of individuals with recurrent infections were infected with a different Plasmodium species than observed at day 0, with 76.5% (13/17) of these "hidden" infections appearing after clearing P. falciparum present at day 0. Artesunate-mefloquine (16.4 hours) and dihydroartemisinin-piperaquine (17.6 hours) had increased clearance rates over artemether-lumefantrine (21.0 hours). Dihydroartemisinin-piperaquine exhibited the longest duration of reinfection prophylaxis. Cure rates were comparable across each species composition. CONCLUSION: No differences in clearance rates were found depending on whether the infection contained species other than P. falciparum. Significantly longer durations of protection were observed for individuals treated with dihydroartemisinin-piperaquine.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Quinolinas , Humanos , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Combinação de Medicamentos , Quênia , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Plasmodium falciparum , Quinolinas/uso terapêutico , Reinfecção , Estudos Retrospectivos
8.
Clin Infect Dis ; 76(4): 704-712, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35767269

RESUMO

BACKGROUND: Assessing the infectious reservoir is critical in malaria control and elimination strategies. We conducted a longitudinal epidemiological study in a high-malaria-burden region in Kenya to characterize transmission in an asymptomatic population. METHODS: 488 study participants encompassing all ages in 120 households within 30 clusters were followed for 1 year with monthly sampling. Malaria was diagnosed by microscopy and molecular methods. Transmission potential in gametocytemic participants was assessed using direct skin and/or membrane mosquito feeding assays, then treated with artemether-lumefantrine. Study variables were assessed using mixed-effects generalized linear models. RESULTS: Asexual and sexual parasite data were collected from 3792 participant visits, with 903 linked with feeding assays. Univariate analysis revealed that the 6-11-year-old age group was at higher risk of harboring asexual and sexual infections than those <6 years old (odds ratio [OR] 1.68, P < .001; and OR 1.81, P < .001), respectively. Participants with submicroscopic parasitemia were at a lower risk of gametocytemia compared with microscopic parasitemia (OR 0.04, P < .001), but they transmitted at a significantly higher rate (OR 2.00, P = .002). A large proportion of the study population who were infected at least once remained infected (despite treatment) with asexual (71.7%, 291/406) or sexual (37.4%, 152/406) parasites. 88.6% (365/412) of feeding assays conducted in individuals who failed treatment the previous month resulted in transmissions. CONCLUSIONS: Individuals with asymptomatic infection sustain the transmission cycle, with the 6-11-year age group serving as an important reservoir. The high rates of artemether-lumefantrine treatment failures suggest surveillance programs using molecular methods need to be expanded for accurate monitoring and evaluation of treatment outcomes.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Animais , Humanos , Criança , Antimaláricos/uso terapêutico , Malária Falciparum/epidemiologia , Artemisininas/uso terapêutico , Artemeter/uso terapêutico , Plasmodium falciparum , Quênia/epidemiologia , Parasitemia/tratamento farmacológico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária/tratamento farmacológico
10.
BMC Med ; 20(1): 448, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36397090

RESUMO

BACKGROUND: Dihydroartemisinin-piperaquine (DHA-PPQ) is an alternative first-line antimalarial to artemether-lumefantrine in Kenya. However, recent reports on the emergence of PPQ resistance in Southeast Asia threaten its continued use in Kenya and Africa. In line with the policy on continued deployment of DHA-PPQ, it is imperative to monitor the susceptibility of Kenyan parasites to PPQ and other antimalarials. METHODS: Parasite isolates collected between 2008 and 2021 from individuals with naturally acquired P. falciparum infections presenting with uncomplicated malaria were tested for in vitro susceptibility to piperaquine, dihydroartemisinin, lumefantrine, artemether, and chloroquine using the malaria SYBR Green I method. A subset of the 2019-2021 samples was further tested for ex vivo susceptibility to PPQ using piperaquine survival assay (PSA). Each isolate was also characterized for mutations associated with antimalarial resistance in Pfcrt, Pfmdr1, Pfpm2/3, Pfdhfr, and Pfdhps genes using real-time PCR and Agena MassARRAY platform. Associations between phenotype and genotype were also determined. RESULTS: The PPQ median IC50 interquartile range (IQR) remained stable during the study period, 32.70 nM (IQR 20.2-45.6) in 2008 and 27.30 nM (IQR 6.9-52.8) in 2021 (P=0.1615). The median ex vivo piperaquine survival rate (IQR) was 0% (0-5.27) at 95% CI. Five isolates had a PSA survival rate of ≥10%, consistent with the range of PPQ-resistant parasites, though they lacked polymorphisms in Pfmdr1 and Plasmepsin genes. Lumefantrine and artemether median IC50s rose significantly to 62.40 nM (IQR 26.9-100.8) (P = 0.0201); 7.00 nM (IQR 2.4-13.4) (P = 0.0021) in 2021 from 26.30 nM (IQR 5.1-64.3); and 2.70 nM (IQR 1.3-10.4) in 2008, respectively. Conversely, chloroquine median IC50s decreased significantly to 10.30 nM (IQR 7.2-20.9) in 2021 from 15.30 nM (IQR 7.6-30.4) in 2008, coinciding with a decline in the prevalence of Pfcrt 76T allele over time (P = 0.0357). The proportions of piperaquine-resistant markers including Pfpm2/3 and Pfmdr1 did not vary significantly. A significant association was observed between PPQ IC50 and Pfcrt K76T allele (P=0.0026). CONCLUSIONS: Circulating Kenyan parasites have remained sensitive to PPQ and other antimalarials, though the response to artemether (ART) and lumefantrine (LM) is declining. This study forms a baseline for continued surveillance of current antimalarials for timely detection of resistance.


Assuntos
Antimaláricos , Artemisininas , Parasitos , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum/genética , Quênia/epidemiologia , Proteínas de Protozoários/genética , Combinação Arteméter e Lumefantrina , Artemeter , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Lumefantrina , Genômica
11.
Front Med (Lausanne) ; 9: 991807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36314027

RESUMO

The impact of pre-existing immunity on the efficacy of artemisinin combination therapy is largely unknown. We performed in-depth profiling of serological responses in a therapeutic efficacy study [comparing artesunate-mefloquine (ASMQ) and artemether-lumefantrine (AL)] using a proteomic microarray. Responses to over 200 Plasmodium antigens were significantly associated with ASMQ treatment outcome but not AL. We used machine learning to develop predictive models of treatment outcome based on the immunoprofile data. The models predict treatment outcome for ASMQ with high (72-85%) accuracy, but could not predict treatment outcome for AL. This divergent treatment outcome suggests that humoral immunity may synergize with the longer mefloquine half-life to provide a prophylactic effect at 28-42 days post-treatment, which was further supported by simulated pharmacokinetic profiling. Our computational approach and modeling revealed the synergistic effect of pre-existing immunity in patients with drug combination that has an extended efficacy on providing long term treatment efficacy of ASMQ.

12.
Malar J ; 21(1): 251, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050680

RESUMO

BACKGROUND: The ABO blood groups consist of A, B, and H carbohydrate antigens, which regulate protein activities during malaria infection in humans. Understanding the interplay between the malaria parasite and blood group antigens is essential in understanding new interventions to reduce the global burden of malaria. This study assessed the burden of malaria infection among individuals with varying blood groups seeking treatment at selected hospitals in Kenya. METHODS: A total of 366 samples from an ongoing malaria surveillance study were diagnosed for malaria by microscopy and further typed for blood group using ABO blood grouping. Age and sex were recorded in a data sheet, and analysed using R software version 4. Groups' proportions (blood group, malaria infection, age and sex) were compared using Pearson's Chi-square and Fischer exact tests. Wilcoxon and Kruskal-Wallis tests were performed and P-value < 0.05 was considered significant after Bonferroni correction for multiple comparisons. To understand the effect of each blood group on parasitaemia, multivariate logistic regression was used to model ABO blood group in relation to parasitaemia. RESULTS: Of the 366 samples analysed, 312 were malaria positive, mean age was 9.83 years (< 5 years n = 152 (48.41%), 6 to 17 years n = 101 (32.16%) and > 18 years n = 61 (19.43%)). Malaria prevalence was higher among females than males, 54.46% and 45.54%, respectively. Kisumu enrolled the highest number 109 (35%)) of malaria cases, Kombewa 108 (35%), Malindi 32 (10%), Kisii 28 (9%), Marigat 23 (7%), and Kericho 12 (4%). Blood group O+ was the most prevalent among the enrolled individuals (46.50%), A+ (27.71%), B+ (21.02%) and AB+ (4.78%) respectively. Compared to blood group O+, blood group B+ individuals were (14%) were more likely to habour Plasmodium falciparum infection as opposed to A+ and AB+ individuals, that were 7% and 20%, respectively,. Those living in malaria-endemic zones presented with higher parasite densities compared to those living in malaria-epidemic (p = 0.0061). Individuals bearing B + blood group are more likely to habour high parasitaemia compared to O + blood group bearers (OR = 4.47, CI = 1.53-13.05, p = 0.006). CONCLUSION: Individuals of blood group B harbour high parasitaemia compared with the blood group O, Additionally, blood group A and B present with symptoms at lower parasitaemia than blood group O. Regardles of malaria transmission zones, individuals from endemic zones showed up with high parasitaemia and among them were more individuals of blood groups A and B than individuals of blood group O. Implying that these individuals were more at risk and require additional attention and effective case management.


Assuntos
Antígenos de Grupos Sanguíneos , Malária Falciparum , Malária , Criança , Feminino , Humanos , Quênia/epidemiologia , Malária/epidemiologia , Malária Falciparum/parasitologia , Masculino , Parasitemia/epidemiologia , Plasmodium falciparum
13.
BMC Infect Dis ; 21(1): 937, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503469

RESUMO

BACKGROUND: Malaria and schistosomiasis present considerable disease burden in tropical and sub-tropical areas and severity is worsened by co-infections in areas where both diseases are endemic. Although pathogenesis of these infections separately is well studied, there is limited information on the pathogenic disease mechanisms and clinical disease outcomes in co-infections. In this study, we investigated the prevalence of malaria and schistosomiasis co-infections, and the hematologic and blood chemistry abnormalities in asymptomatic adults in a rural fishing community in western Kenya. METHODS: This sub-study used samples and data collected at enrollment from a prospective observational cohort study (RV393) conducted in Kisumu County, Kenya. The presence of malaria parasites was determined using microscopy and real-time-PCR, and schistosomiasis infection by urine antigen analysis (CCA). Hematological analysis and blood chemistries were performed using standard methods. Statistical analyses were performed to compare demographic and infection data distribution, and hematologic and blood chemistry parameters based on different groups of infection categories. Clinically relevant hematologic conditions were analyzed using general linear and multivariable Poisson regression models. RESULTS: From February 2017 to May 2018, we enrolled 671 participants. The prevalence of asymptomatic Plasmodium falciparum was 28.2% (157/556) and schistosomiasis 41.2% (229/562), with 18.0% (100/556) of participants co-infected. When we analyzed hematological parameters using Wilcoxon rank sum test to evaluate median (IQR) distribution based on malarial parasites and/or schistosomiasis infection status, there were significant differences in platelet counts (p = 0.0002), percent neutrophils, monocytes, eosinophils, and basophils (p < 0.0001 each). Amongst clinically relevant hematological abnormalities, eosinophilia was the most prevalent at 20.6% (116/562), whereas thrombocytopenia was the least prevalent at 4.3% (24/562). In univariate model, Chi-Square test performed for independence between participant distribution in different malaria parasitemia/schistosomiasis infection categories within each clinical hematological condition revealed significant differences for thrombocytopenia and eosinophilia (p = 0.006 and p < 0.0001, respectively), which was confirmed in multivariable models. Analysis of the pairwise mean differences of liver enzyme (ALT) and kidney function (Creatinine Clearance) indicated the presence of significant differences in ALT across the infection groups (parasite + /CCA + vs all other groups p < .003), but no differences in mean Creatinine Clearance across the infection groups. CONCLUSIONS: Our study demonstrates the high burden of asymptomatic malaria parasitemia and schistosomiasis infection in this rural population in Western Kenya. Asymptomatic infection with malaria or schistosomiasis was associated with laboratory abnormalities including neutropenia, leukopenia and thrombocytopenia. These abnormalities could be erroneously attributed to other diseases processes during evaluation of diseases processes. Therefore, evaluating for co-infections is key when assessing individuals with laboratory abnormalities. Additionally, asymptomatic infection needs to be considered in control and elimination programs given high prevalence documented here.


Assuntos
Coinfecção , Malária Falciparum , Malária , Esquistossomose , Adulto , Infecções Assintomáticas/epidemiologia , Coinfecção/epidemiologia , Estudos Transversais , Humanos , Quênia/epidemiologia , Malária/complicações , Malária/epidemiologia , Malária Falciparum/complicações , Malária Falciparum/epidemiologia , Plasmodium falciparum , Prevalência , Estudos Prospectivos , População Rural , Esquistossomose/complicações , Esquistossomose/epidemiologia
14.
Lancet Microbe ; 2(4): e141-e150, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-35544189

RESUMO

BACKGROUND: The epidemiology and severity of non-falciparum malaria in endemic settings has garnered little attention. We aimed to characterise the prevalence, interaction, clinical risk factors, and temporal trends of non-falciparum Plasmodium species among symptomatic individuals presenting at health-care facilities in endemic settings of Kenya. METHODS: We diagnosed and analysed infecting malaria species (Plasmodium falciparum, Plasmodium ovale curtisi, Plasmodium ovale wallikeri, and Plasmodium malariae) via PCR in clinical samples collected between March 1, 2008, and Dec 31, 2016, from six hospitals located in different regions of Kenya. We recruited patients aged 6 months or older who presented at outpatient departments with symptoms of malaria or tested positive for uncomplicated malaria by malaria rapid diagnostic test. Descriptive statistics were used to describe the prevalence and distribution of Plasmodium species. A statistical model was designed and used for estimating the frequency of Plasmodium species and assessing interspecies interactions. Mixed-effect linear regression models with random slopes for each location were used to test for change in prevalence over time. FINDINGS: Samples from 2027 symptomatic participants presenting at care facilities were successfully analysed for all Plasmodium species. 1469 (72·5%) of the samples were P falciparum single-species infections, 523 (25·8%) were mixed infections, and only 35 (1·7%) were single non-falciparum species infections. 452 (22·3%) were mixed infections containing P ovale spp. A likelihood-based model calculation of the population frequency of each species estimated a significant within-host interference between P falciparum and P ovale curtisi. Mixed-effect logistic regression models identified a significant increase in P ovale wallikeri (2·1% per year; p=0·043) and P ovale curtisi (0·7% per year; p=0·0002) species over time, with a reciprocal decrease in P falciparum single-species infections (2·5% per year; p=0·0065). The frequency of P malariae infections did not significantly change over time. Risk of P falciparum infections presenting with fever was lower if co-infected with P malariae (adjusted odds ratio 0·43, 95% CI 0·25-0·74; p=0·0023). INTERPRETATION: Our results show a prevalence of non-falciparum species infections of 27·5% among symptomatic individuals presenting at care facilities, which is higher than expected from previous cross-sectional surveys. The proportion of infections with P ovale wallikeri and P ovale curtisi was observed to significantly increase over the period of study, which could be due to attenuated responsiveness of these species to malaria drug treatment. The increase in frequency of P ovale spp could threaten the malaria control efforts in Kenya and pose increased risk of malaria to travellers. FUNDING: Armed Forces Health Surveillance Branch and its Global Emerging Infections Surveillance Section.


Assuntos
Coinfecção , Malária Falciparum , Malária , Plasmodium ovale , Estudos Transversais , Humanos , Funções Verossimilhança , Malária/diagnóstico , Malária Falciparum/epidemiologia , Plasmodium falciparum , Plasmodium malariae , Prevalência
15.
Plants (Basel) ; 11(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35009051

RESUMO

Malaria is the most lethal parasitic disease in the world. The frequent emergence of resistance by malaria parasites to any drug is the hallmark of sustained malaria burden. Since the deployment of artemisinin-based combination therapies (ACTs) it is clear that for a sustained fight against malaria, drug combination is one of the strategies toward malaria elimination. In Sub-Saharan Africa where malaria prevalence is the highest, the identification of plants with a novel mechanism of action that is devoid of cross-resistance is a feasible strategy in drug combination therapy. Thus, artemether and lumefantrine were separately combined and tested with extracts of Securidaca longipedunculata, a plant widely used to treat malaria, at fixed extract-drug ratios of 4:1, 3:1, 1:1, 1:2, 1:3, and 1:4. These combinations were tested for antiplasmodial activity against three strains of Plasmodium falciparum (W2, D6, and DD2), and seven field isolates that were characterized for molecular and ex vivo drug resistance profiles. The mean sum of fifty-percent fractional inhibition concentration (FIC50) of each combination and singly was determined. Synergism was observed across all fixed doses when roots extracts were combined with artemether against D6 strain (FIC50 0.403 ± 0.068) and stems extract combined with lumefantrine against DD2 strain (FIC50 0.376 ± 0.096) as well as field isolates (FIC50 0.656 ± 0.067). Similarly, synergism was observed in all ratios when leaves extract were combined with lumefantrine against W2 strain (FIC50 0.456 ± 0.165). Synergism was observed in most combinations indicating the potential use of S. longipedunculata in combination with artemether and lumefantrine in combating resistance.

16.
PeerJ ; 8: e8082, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32201636

RESUMO

Malaria drug resistance is a global public health concern. Though parasite mutations have been associated with resistance, other factors could influence the resistance. A robust surveillance system is required to monitor and help contain the resistance. This study established the role of travel and gender in dispersion of chloroquine resistant genotypes in malaria epidemic zones in Kenya. A total of 1,776 individuals presenting with uncomplicated malaria at hospitals selected from four malaria transmission zones in Kenya between 2008 and 2014 were enrolled in a prospective surveillance study assessing the epidemiology of malaria drug resistance patterns. Demographic and clinical information per individual was obtained using a structured questionnaire. Further, 2 mL of blood was collected for malaria diagnosis, parasitemia quantification and molecular analysis. DNA extracted from dried blood spots collected from each of the individuals was genotyped for polymorphisms in Plasmodium falciparum chloroquine transporter gene (Pfcrt 76), Plasmodium falciparum multidrug resistant gene 1 (Pfmdr1 86 and Pfmdr1 184) regions that are putative drug resistance genes using both conventional polymerase chain reaction (PCR) and real-time PCR. The molecular and demographic data was analyzed using Stata version 13 (College Station, TX: StataCorp LP) while mapping of cases at the selected geographic zones was done in QGIS version 2.18. Chloroquine resistant (CQR) genotypes across gender revealed an association with chloroquine resistance by both univariate model (p = 0.027) and by multivariate model (p = 0.025), female as reference group in both models. Prior treatment with antimalarial drugs within the last 6 weeks before enrollment was associated with carriage of CQR genotype by multivariate model (p = 0.034). Further, a significant relationship was observed between travel and CQR carriage both by univariate model (p = 0.001) and multivariate model (p = 0.002). These findings suggest that gender and travel are significantly associated with chloroquine resistance. From a gender perspective, males are more likely to harbor resistant strains than females hence involved in strain dispersion. On the other hand, travel underscores the role of transport network in introducing spread of resistant genotypes, bringing in to focus the need to monitor gene flow and establish strategies to minimize the introduction of resistance strains by controlling malaria among frequent transporters.

17.
F1000Res ; 9: 1268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35600144

RESUMO

Background: The emergence of artemisinin resistance in South East Asia calls for urgent discovery of new drug compounds that have antiplasmodial activity. Unlike the classical compound screening drug discovery methods, the rational approach involving targeted drug discovery is less cumbersome and therefore key for innovation of new antiplasmodial compounds.  Plasmodium falciparum (Pf) utilizes the process of host erythrocyte remodeling using Plasmodium-helical interspersed sub-telomeric domain (PHIST) containing proteins, which are amenable drug targets. The aim of this study is to identify inhibitors of PHIST from sulfated polysaccharides as new antimalarials. Methods: 251 samples from an ongoing study of epidemiology of malaria and drug resistance sensitivity patterns in Kenya were sequenced for PHISTb/RLP1 gene using Sanger sequencing. The sequenced reads were mapped to the reference Pf3D7 protein sequence of PHISTb/RLP1 using CLC Main Workbench. Homology modeling of both reference and mutant protein structures was achieved using the LOMETs tool. The models were refined using ModRefiner for energy minimization. Ramachandran plot was generated by ProCheck to assess the conformation of amino acids in the protein model. Protein binding sites predictions were assessed using FT SITE software. We searched for prospective antimalarials from PubChem. Docking experiments were achieved using AutoDock Vina and analysis results visualized in PyMOL. Results: Sanger sequencing generated 86 complete sequences. Upon mapping of the sequences to the reference, 12 non-synonymous single nucleotide polymorphisms were considered for mutant protein structure analysis. Eleven drug compounds with antiplasmodial activity were identified. Both modelled PHISTb/RLP1 reference and mutant structures had a Ramachandran score of >90% of the amino acids in the favored region. Ten of the drug compounds interacted with amino acid residues in PHISTb and RESA domains, showing potential activity against these proteins. Conclusion: These interactions provide lead compounds for new anti-malarial molecules. Further in vivo testing is recommended.

18.
PLoS Negl Trop Dis ; 13(3): e0007223, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30897090

RESUMO

OBJECTIVE: Cotrimoxazole prevents opportunistic infections including falciparum malaria in HIV-infected individuals but there are concerns of cross-resistance to other antifolate drugs such as sulphadoxine-pyrimethamine (SP). In this study, we investigated the prevalence of antifolate-resistance mutations in Plasmodium falciparum that are associated with SP resistance in HIV-infected individuals on antiretroviral treatment randomized to discontinue (STOP-CTX), or continue (CTX) cotrimoxazole in Western Kenya. DESIGN: Samples were obtained from an unblinded, non-inferiority randomized controlled trial where participants were recruited on a rolling basis for the first six months of the study, then followed-up for 12 months with samples collected at enrollment, quarterly, and during sick visits. METHOD: Plasmodium DNA was extracted from blood specimens. Initial screening to determine the presence of Plasmodium spp. was performed by quantitative reverse transcriptase real-time PCR, followed by genotyping for the presence of SP-resistance associated mutations by Sanger sequencing. RESULTS: The prevalence of mutant haplotypes associated with SP-resistant parasites in pfdhfr (51I/59R/108N) and pfdhps (437G/540E) genes were significantly higher (P = 0.0006 and P = 0.027, respectively) in STOP-CTX compared to CTX arm. The prevalence of quintuple haplotype (51I/59R/108N/437G/540E) was 51.8% in STOP-CTX vs. 6.3% (P = 0.0007) in CTX arm. There was a steady increase in mutant haplotypes in both genes in STOP-CTX arm overtime through the study period, reaching statistical significance (P < 0.0001). CONCLUSION: The frequencies of mutations in pfdhfr and pfdhps genes were higher in STOP-CTX arm compared to CTX arm, suggesting cotrimoxazole effectively controls and selects against SP-resistant parasites. TRIAL REGISTRATION: ClinicalTrials.gov NCT01425073.


Assuntos
Antimaláricos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Infecções por HIV/complicações , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Adolescente , Adulto , Di-Hidropteroato Sintase/genética , Combinação de Medicamentos , Resistência a Medicamentos/genética , Haplótipos , Humanos , Quênia/epidemiologia , Malária Falciparum/complicações , Malária Falciparum/epidemiologia , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Profilaxia Pré-Exposição , Prevalência , Proteínas de Protozoários/genética , Pirimetamina/farmacologia , Sulfadoxina/farmacologia , Tetra-Hidrofolato Desidrogenase/genética , Adulto Jovem
19.
PLoS One ; 12(10): e0186364, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29088219

RESUMO

Malaria causes about half a million deaths annually, with Plasmodium falciparum being responsible for 90% of all the cases. Recent reports on artemisinin resistance in Southeast Asia warrant urgent discovery of novel drugs for the treatment of malaria. However, most bioactive compounds fail to progress to treatments due to safety concerns. Drug repositioning offers an alternative strategy where drugs that have already been approved as safe for other diseases could be used to treat malaria. This study screened approved drugs for antimalarial activity using an in silico chemogenomics approach prior to in vitro verification. All the P. falciparum proteins sequences available in NCBI RefSeq were mined and used to perform a similarity search against DrugBank, TTD and STITCH databases to identify similar putative drug targets. Druggability indices of the potential P. falciparum drug targets were obtained from TDR targets database. Functional amino acid residues of the drug targets were determined using ConSurf server which was used to fine tune the similarity search. This study predicted 133 approved drugs that could target 34 P. falciparum proteins. A literature search done at PubMed and Google Scholar showed 105 out of the 133 drugs to have been previously tested against malaria, with most showing activity. For further validation, drug susceptibility assays using SYBR Green I method were done on a representative group of 10 predicted drugs, eight of which did show activity against P. falciparum 3D7 clone. Seven had IC50 values ranging from 1 µM to 50 µM. This study also suggests drug-target association and hence possible mechanisms of action of drugs that did show antiplasmodial activity. The study results validate the use of proteome-wide target similarity approach in identifying approved drugs with activity against P. falciparum and could be adapted for other pathogens.


Assuntos
Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Antimaláricos/uso terapêutico , Bases de Dados Factuais , Aprovação de Drogas , Técnicas In Vitro , Proteínas de Protozoários/química , Homologia de Sequência de Aminoácidos
20.
PLoS One ; 11(9): e0162524, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27611315

RESUMO

Genetically determined artemisinin resistance in Plasmodium falciparum has been described in Southeast Asia. The relevance of recently described Kelch 13-propeller mutations for artemisinin resistance in Sub-Saharan Africa parasites is still unknown. Southeast Asia parasites have low genetic diversity compared to Sub-Saharan Africa, where parasites are highly genetically diverse. This study attempted to elucidate whether genetics provides a basis for discovering molecular markers in response to artemisinin drug treatment in P. falciparum in Kenya. The genetic diversity of parasites collected pre- and post- introduction of artemisinin combination therapy (ACT) in western Kenya was determined. A panel of 12 microsatellites and 91 single nucleotide polymorphisms (SNPs) distributed across the P. falciparum genome were genotyped. Parasite clearance rates were obtained for the post-ACT parasites. The 12 microsatellites were highly polymorphic with post-ACT parasites being significantly more diverse compared to pre-ACT (p < 0.0001). The median clearance half-life was 2.55 hours for the post-ACT parasites. Based on SNP analysis, 15 of 90 post-ACT parasites were single-clone infections. Analysis revealed 3 SNPs that might have some causal association with parasite clearance rates. Further, genetic analysis using Bayesian tree revealed parasites with similar clearance phenotypes were more closely genetically related. With further studies, SNPs described here and genetically determined response to artemisinin treatment might be useful in tracking artemisinin resistance in Kenya.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Plasmodium falciparum/genética , Teorema de Bayes , Variação Genética/genética , Genótipo , Humanos , Quênia , Repetições de Microssatélites/genética , Filogenia , Plasmodium falciparum/classificação , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...