RESUMO
The distinction between the different classes of glycolipids is conditioned by the action of specific core transferases. The entry point for lacto-series glycolipids is catalyzed by the beta1,3 N-acetylglucosaminyltransferase GlcNAc(beta1,3)Gal(beta1,4)Glc-ceramide (Lc3) synthase enzyme. The Lc3 synthase activity has been shown to be regulated during development, especially during brain morphogenesis. Here, we report the molecular cloning of a mouse gene encoding an Lc3 synthase enzyme. The mouse cDNA included an open reading frame of 1131 base pairs encoding a protein of 376 amino acids. The Lc3 synthase protein shared several structural motifs previously identified in the members of the beta1,3 glycosyltransferase superfamily. The Lc3 synthase enzyme efficiently utilized the lactosyl ceramide glycolipid acceptor. The identity of the reaction products of Lc3 synthase-transfected CHOP2/1 cells was confirmed by thin-layer chromatography immunostaining using antibodies TE-8 and 1B2 that recognize Lc3 and Gal(beta1,4)GlcNAc(beta1,3)Gal(beta1,4)Glc-ceramide (nLc4) structures, respectively. In addition to the initiating activity for lacto-chain synthesis, the Lc3 synthase could extend the terminal N-acetyllactosamine unit of nLc4 and also had a broad specificity for gangliosides GA1, GM1, and GD1b to generate neolacto-ganglio hybrid structures. The mouse Lc3 synthase gene was mainly expressed during embryonic development. In situ hybridization analysis revealed that that the Lc3 synthase was expressed in most tissues at embryonic day 11 with elevated expression in the developing central nervous system. Postnatally, the expression was restricted to splenic B-cells, the placenta, and cerebellar Purkinje cells where it colocalized with HNK-1 reactivity. These data support a key role for the Lc3 synthase in regulating neolacto-series glycolipid synthesis during embryonic development.
Assuntos
Glicolipídeos/biossíntese , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Amino Açúcares/química , Animais , Linfócitos B/metabolismo , Sequência de Bases , Northern Blotting , Encéfalo/embriologia , Encéfalo/metabolismo , Linhagem Celular , Cerebelo/metabolismo , Cromatografia em Camada Fina , Clonagem Molecular , DNA Complementar/metabolismo , Hibridização In Situ , Insetos , Camundongos , Modelos Químicos , Dados de Sequência Molecular , N-Acetilglucosaminiltransferases/química , Fases de Leitura Aberta , Proteínas Recombinantes/metabolismo , Baço/citologia , Especificidade por Substrato , Fatores de Tempo , Distribuição TecidualRESUMO
High-mobility-group (HMG) proteins are a family of non-histone chromosomal proteins which bind to DNA. They have been implicated in multiple aspects of gene regulation and cellular differentiation. Sulfoglucuronyl carbohydrate binding protein, SBP-1, which is also localized in the neuronal nuclei, was shown to be required for neurite outgrowth and neuronal migration during development of the nervous system. In order to establish relationship between SBP-1 and HMG family proteins, two HMG proteins were isolated and purified from developing rat cerebellum by heparin-sepharose and sulfatide-octyl-sepharose affinity column chromatography and their biochemical and biological properties were compared with those of SBP-1. Characterization by high performance liquid chromatography--mass spectrometry (HPLC-MS), partial peptide sequencing and western blot analysis showed the isolated HMG proteins to be HMG-1 and HMG-2. Isoelectric focusing, HPLC-MS and peptide sequencing data also suggested that HMG-1 and SBP-1 were identical. Similar to SBP-1, both HMG proteins bound specifically to sulfated glycolipids, sulfoglucuronylglycolipids (SGGLs), sulfatide and seminolipid in HPTLC-immuno-overlay and solid-phase binding assays. The HMG proteins promoted neurite outgrowth in dissociated cerebellar cells, which was inhibited by SGGLs, anti-Leu7 hybridoma (HNK-1) and anti-SBP-1 peptide antibodies, similar to SBP-1. The proteins also promoted neurite outgrowth in explant cultures of cerebellum. The results showed that the cerebellar HMG-1 and -2 proteins have similar biochemical and biological properties and HMG-1 is most likely identical to SBP-1.
Assuntos
Proteínas de Transporte/química , Cerebelo/química , Proteínas de Grupo de Alta Mobilidade/química , Sequência de Aminoácidos , Animais , Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/metabolismo , Proteínas de Transporte/farmacologia , Células Cultivadas , Cerebelo/citologia , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Glicolipídeos/metabolismo , Proteína HMGB1 , Proteínas de Grupo de Alta Mobilidade/isolamento & purificação , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Grupo de Alta Mobilidade/farmacologia , Espectrometria de Massas , Dados de Sequência Molecular , Peso Molecular , Neuritos/efeitos dos fármacos , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Análise de Sequência de ProteínaRESUMO
Sulfoglucuronyl glycolipids (SGGLs) have been considered as target antigens in demyelinating peripheral neuropathies associated with IgM monoclonal gammopathy. The regulation of expression of SGGLs in the rat sciatic nerve during development was studied by assaying the levels of SGGLs and activities of four glycosyltransferases sequentially involved in their synthesis from lactosylceramide. The levels of SGGLs in the sciatic nerve increased with development and reached a maximum at sixty days after birth. The rate of increase in the level of SGGLs between day 5 to 20 was similar to rate of deposition of myelin in the nerve. Analysis of the activities of the glycosyltransferases showed that only lactotriosylceramide galactosyltransferase (LcOse3Cer-GalTr) increased in parallel with the levels of SGGLs during development. The other three enzymes were not co-relative with the synthesis of SGGLs. The product of LcOse3Cer-GalTr reaction, nLcOse4Cer is the key intermediate for all neolactoglycolipids, particularly NeuAc alpha2-3nLcOse4Cer or nLM1, which is the major ganglioside (60%) of myelin in rat sciatic nerve. The results suggest that in the sciatic nerve SGGLs are mostly associated with Schwann cell myelin and their synthesis is regulated by LcOse3Cer-GalTr, unlike in the cerebral cortex and cerebellum where SGGLs are associated with the neuronal membranes and their synthesis is regulated by lactosylceramide N-acetylglucosaminyltransferase (LcOse2Cer-GlcNAcTr).
Assuntos
Envelhecimento/fisiologia , Globosídeos/biossíntese , Glicolipídeos/biossíntese , Nervo Isquiático/metabolismo , Animais , Sequência de Carboidratos , Glicosiltransferases/metabolismo , Dados de Sequência Molecular , Ratos , Nervo Isquiático/crescimento & desenvolvimentoRESUMO
Developmental expression of sulfoglucuronyl carbohydrate (SGC) and its binding protein, SBP-1 was studied in the rat cerebral cortex to understand their function. Between embryonic day (ED) 14-19, SBP-1 was strongly expressed in neurons of the ventricular zone and migrating neurons throughout the cortex. SBP-1 declined at birth and by postnatal day (PD) 3 only the latest arriving neurons in the most superficial segment of the cortical plate expressed SBP-1. Between ED 14-16, SGC was expressed in a thin row of glial cells near the ventricles and on their radial processes. Between ED 16-PD 3, SGC was not in neuronal cell soma, but was in neuronal plasma membranes and processes surrounding the neuronal perikarya. The expression of SGC declined similar to SBP-1 and both of them disappeared by PD 7. The expression of SBP-1 and SGC was chronologically coordinated with neuronal migration. SBP-1 was specifically expressed in immature neuronal nuclei and plasma membranes. SBP-1 and SGC were colocalized and were available for interaction with each other on neuronal cell membranes and processes. This was confirmed with isolated neurons in culture. As in vivo, the expression of SBP-1 in neurons declined with time in culture. The dissociated cortical neurons when plated on SBP-1 as a substratum produced extensive neuritic outgrowth. HNK-1, anti-SBP-1 antibodies and sulfoglucuronyl glycolipid, SGGL specifically and severely reduced neurite outgrowth. SBP-1-SGC interactions provide a potential mechanism for guidance and cell signaling, in the processes of neuronal migration and terminal differentiation.
Assuntos
Antígenos CD57/metabolismo , Metabolismo dos Carboidratos , Movimento Celular/fisiologia , Córtex Cerebral/metabolismo , Glicolipídeos/metabolismo , Glicoproteínas/metabolismo , Neurônios/metabolismo , Animais , Animais Recém-Nascidos , Anticorpos Monoclonais , Antígenos CD57/imunologia , Adesão Celular , Células Cultivadas , Córtex Cerebral/crescimento & desenvolvimento , Embrião de Mamíferos , Epitopos , Feminino , Neuritos/metabolismo , Gravidez , Ligação Proteica , Ratos , Ratos Sprague-DawleyRESUMO
We have previously reported the molecular cloning of beta1, 3-galactosyltransferase-V (beta3GalT-V), which catalyzes the transfer of Gal to GlcNAc-based acceptors with a preference for the core3 O-linked glycan GlcNAc(beta1,3)GalNAc structure. Further characterization indicated that the recombinant beta3GalT-V enzyme expressed in Sf9 insect cells also utilized the glycolipid Lc3Cer as an efficient acceptor. Surprisingly, we also found that beta3GalT-V catalyzes the transfer of Gal to the terminal GalNAc unit of the globoside Gb4, thereby synthesizing the glycolipid Gb5, also known as the stage-specific embryonic antigen-3 (SSEA-3). The SSEA-3 synthase activity of beta3GalT-V was confirmed in vivo by stable expression of the human beta3GalT-V gene in F9 mouse teratocarcinoma cells, as detected with the monoclonal antibody MC-631 by flow cytometry analysis and immunostaining of extracted glycolipids. The biological relation between SSEA-3 formation and beta3GalT-V was further documented by showing that F9 cells treated with the differentiation-inducing agent retinoic acid induced the expression of both the SSEA-3 epitope and the endogenous mouse beta3GalT-V gene. This study represents the first example of a glycosyltransferase, which utilizes two kinds of sugar acceptor substrates without requiring any additional modifier molecule.
Assuntos
Galactosiltransferases/metabolismo , Glicoesfingolipídeos/metabolismo , Animais , Antígenos Glicosídicos Associados a Tumores , Sequência de Bases , Primers do DNA , Galactosiltransferases/genética , Humanos , Camundongos , Dados de Sequência Molecular , Antígenos Embrionários Estágio-Específicos , Especificidade por Substrato , Células Tumorais CultivadasRESUMO
Sulfoglucuronyl carbohydrate (SGC) is expressed on several glycoproteins of the immunoglobulin superfamily of cell-adhesion molecules. Developmental expression of SGC and its binding protein, SBP-1, was studied in the rat cerebellum by immunocytochemistry to understand the function of SBP-1 and the significance of its interaction with SGC. During early postnatal development (postnatal day (PD) 3-10) SBP-1 was strongly expressed in the granule neurons of the external and internal granule cell layers (EGCL and IGCL). This expression declined by PD 15, and disappeared in the adult. Between PD 3 and 15, SGC was expressed in cellular processes surrounding the granule neurons in the IGCL, and it also declined and disappeared with development. SGC expression, however, continued in Purkinje cells and their dendrites in the molecular layer in adults. The expressions of SBP-1 and SGC were developmentally regulated and appeared to be chronologically co-ordinated with granule neuron migration from EGCL to IGCL. High magnification confocal microscopy showed that SBP-1 was primarily localized in nuclei and plasma membranes of granule neurons, whereas SGC in the IGCL was localized on neuronal plasma membranes, dendrites and glial processes, but not in cell soma. The relative localization of SBP and SGC was confirmed by cellular and subcellular markers in vivo and with dissociated cerebellar cells in culture. It is proposed that SBP-1 on plasma membranes of granule neurons interacts with SGC on the surrounding processes and membranes and this interaction could provide a potential mechanism for guidance and cell signaling, in the processes of granule neuron migration and differentiation.
Assuntos
Antígenos CD57/metabolismo , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Compartimento Celular/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Cerebelo/citologia , Imuno-Histoquímica , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/citologia , Ligação Proteica , Ratos , Ratos Sprague-DawleyRESUMO
Sulfoglucuronyl carbohydrate (SGC) is expressed on several neural cell-adhesion molecules and on glycolipids. SGC and its binding protein, SBP-1 are developmentally regulated in the nervous system and have been implicated in regulating neurite outgrowth and cell-cell recognition during neuronal cell migration. To elucidate the role of interaction between SGC and SBP-1, microexplant cultures of postnatal day 5 rat cerebellum were employed. In explant cultures, SGC was localized primarily in the neuronal cell processes, neurofilaments, and dendrites that emerge from the core of the explants up to 90 microm, after 24 hr in culture. SGC was also present in the short astrocytic processes near the core of the explant. SBP-1 was localized mainly in the granule neuron cell bodies and faintly on cell plasma membranes and processes. Granule neurons, expressing SBP-1, migrated outward in close contact with the SGC bearing neuronal processes, suggesting interaction between SGC and SBP-1. The neurite outgrowth and cell migration were specifically and severely reduced, in dose-dependent manners, by anti-SGC (HNK-1) and anti-SBP-1 antibodies and sulfoglucuronyl glycolipid (SGGL). Other irrelevant antibodies and glycolipids had little effect. The results showed that SBP-1 was required for neurite outgrowth and that SGC-SBP-1 interaction was important for cell-cell recognition and cell migration.
Assuntos
Movimento Celular/fisiologia , Globosídeos/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/citologia , Animais , Biomarcadores , Metabolismo dos Carboidratos , Carboidratos/análise , Comunicação Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Cerebelo/citologia , Imunofluorescência , Globosídeos/farmacologia , Glicolipídeos/análise , Glicolipídeos/metabolismo , Imunoglobulina G/farmacologia , Imunoglobulina M/farmacologia , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/imunologia , Neuritos/química , Neurônios/metabolismo , Neurônios/ultraestrutura , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley , Sulfoglicoesfingolipídeos/metabolismo , Sulfoglicoesfingolipídeos/farmacologiaRESUMO
Sulfoglucuronyl carbohydrate is the terminal moiety of neolacto-oligosaccharides, expressed on several glycoproteins of the immunoglobulin superfamily involved in cell-cell recognition and on two glycolipids. Sulfoglucuronyl carbohydrate is temporally and spatially regulated in the developing nervous system. It appears to be involved in neural cell recognition and in cell adhesion processes through its interaction with specific proteins on cell surfaces. Previously we have characterized a specific sulfoglucuronyl carbohydrate-binding protein in rat brain. Sulfoglucuronyl carbohydrate binding protein-1 is structurally similar to a 30,000 mol. wt adhesive and neurite outgrowth promoting protein amphoterin [Rauvala and Pihlaskari (1987) J. biol. Chem. 262, p. 16,625]. The pattern of expression of sulfoglucuronyl carbohydrate binding protein-1 in developing rat nervous system was studied to understand the significance of its interaction with sulfoglucuronyl carbohydrate-bearing molecules. Biochemical analyses showed that the expression of sulfoglucuronyl carbohydrate binding protein-1 was developmentally regulated similarly to sulfoglucuronyl carbohydrate. Immunocytochemical localization of sulfoglucuronyl carbohydrate binding protein-1 and sulfoglucuronyl carbohydrate was performed by bright-field and fluorescent confocal laser scanning microscopy. In postnatal day 7 rat cerebellum, sulfoglucuronyl carbohydrate binding protein-1 was primarily associated with neurons of the external and internal granule cell layers. The sulfoglucuronyl carbohydrate binding protein-1 immunoreactivity was absent in Purkinje cell bodies and their dendrites in the molecular layer, as well as in Bergmann glial fibres and in white matter. In contrast, sulfoglucuronyl carbohydrate (reactive with HNK-1 antibody) was localized in processes surrounding granule neurons in the internal granule cell layer. Sulfoglucuronyl carbohydrate was also expressed in Purkinje neurons and their dendrites in the molecular layer and their axonal processes in the white matter. To a lesser extent Bergmann glial fibres were also positive for sulfoglucuronyl carbohydrate. In the cerebral cortex, at embryonic day 21, sulfoglucuronyl carbohydrate binding protein-1 was mainly observed in immature neurons of the cortical plate and subplate and dividing cells near the ventricular zone. Whereas, sulfoglucuronyl carbohydrate was strongly expressed in the fibres of the subplate and marginal zone. Sulfoglucuronyl carbohydrate was also found in the processes surrounding the sulfoglucuronyl carbohydrate binding protein-1-expressing neuronal cell bodies in the cortical plate and in ventricular zone. The specific localization of sulfoglucuronyl carbohydrate binding protein- in cerebellar granule neurons and neurons of the cerebral cortex was also confirmed by immunocytochemistry of the dissociated tissue cell cultures. The complementary localization of sulfoglucuronyl carbohydrate and sulfoglucuronyl carbohydrate binding protein-1, both in cerebral cortex and cerebellum, in apposing cellular structures indicate possible interaction between the two and signalling during the process of cell migration and arrest of migration.
Assuntos
Antígenos CD57/biossíntese , Carboidratos/biossíntese , Cerebelo/química , Córtex Cerebral/química , Glicoproteínas/análise , Animais , Anticorpos , Especificidade de Anticorpos , Química Encefálica/fisiologia , Antígenos CD57/análise , Carboidratos/análise , Cerebelo/citologia , Córtex Cerebral/citologia , Imunofluorescência , Globosídeos/análise , Globosídeos/biossíntese , Glucuronatos/análise , Glucuronatos/metabolismo , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Microscopia Confocal , Neurônios/química , Neurônios/metabolismo , Coelhos , Ratos , Ratos Sprague-DawleyRESUMO
Sulfoglucuronyl carbohydrate (SGC) linked to the terminal moiety of neolacto-oligosaccharides is expressed in several glycoproteins of the immunoglobulin superfamily involved in neural cell-cell recognition as well as in two sulfoglucuronylglycolipids (SGGLs) of the nervous system. SGGLs and SGC-containing glycoproteins are temporally and spatially regulated during development of the nervous system. In the cerebellum, the expression of SGC, particularly that of SGGLs, is biphasic. Several studies have suggested that the initial rise and decline in the levels of SGGLs and SGC-containing proteins correlated with the migration of granule neurons from the external granule cell layer to the internal granule cell layer and their subsequent maturation, whereas the later rise and continued expression of SGGLs in the adult was associated with their localization in the Purkinje neurons and their dendrites in the molecular layer. Here it is shown by immunocytochemical methods that the expression of SGC declined progressively in granule neurons isolated from cerebella of increasing age. The decline in the expression of SGC in granule neurons was also shown with time in culture. These results correlated with the previously shown declining activity of the regulatory enzyme lactosylceramide N-acetylglucosaminyltransferase (GlcNAc-Tr) with age in vivo and in isolated granule neurons in culture. GlcNAc-Tr synthesizes a key precursor, lactotriosylceramide, involved in the biosynthesis of SGGL-1. The down-regulated synthesis of SGGLs in the mature granule neurons was shown by immunocytochemical and biochemical methods to be restored when a precursor, glucuronylneolactotetraosylceramide (GGL-1), which is beyond the GlcNAc-Tr step, was exogenously provided to these cells. The biological effect of such restoration of the synthesis of SGGLs in the mature granule neurons leads to cell aggregation and enhanced proliferation of neurites, amounting to dedifferentiation.
Assuntos
Cerebelo/citologia , Cerebelo/metabolismo , Globosídeos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Animais , Diferenciação Celular , Divisão Celular , Neuritos/ultraestrutura , Ratos , Ratos Sprague-Dawley , Transdução de SinaisRESUMO
The developmentally regulated and stage-specifically expressed HNK-1 carbohydrate found on sulfoglucuronylglycolipids (SGGLs) and certain glycoproteins has been proposed to be involved in neural cell adhesion and recognition processes through its interaction with protein "receptors." We have isolated and purified a approximately 30-kDa SGGL-binding protein (SBP-1) from neonatal rat brain. SBP-1 specifically bound to SGGLs and sulfatide both in solid-phase immunobinding and high-performance thin-layer chromatography-immunooverlay assays. N-terminal sequence analysis showed that SBP-1 is similar to an adhesive neurite outgrowth promoting protein amphoterin. Desulfation of SGGLs resulted in abolition of SBP-1 binding. However, chemical modification of glucuronic acid moiety by either esterification or reduction of the carboxyl group had no effect, suggesting requirement of the carbohydrate-linked sulfate group for SBP-1 binding. The binding of SBP-1 to SGGLs was specifically inhibited by HNK-1 antibody but not by other IgM antibodies. The binding of SBP-1 to sulfatide, however, was not inhibited by HNK-1 antibody. Heparin, fucoidan, and dextran sulfate (50K) also inhibited the binding of SBP-1 to SGGLs. During development of the rat cerebral cortex, the level of SBP-1 decreased after embryonic day 18 to an almost undetectable level by postnatal day 10, whereas in the cerebellum, the expression of SBP-1 was maximal at postnatal day 7. SBP-1 also bound specifically to the HNK-1 glycoproteins isolated from rat brain by HNK-1 immunoaffinity chromatography. Proteins without HNK-1 carbohydrate did not bind SBP-1. The binding to HNK-1 glycoproteins was inhibited by HNK-1 antibody, but not by other IgM antibodies, indicating that the binding was mediated through the HNK-1 carbohydrate moiety of the proteins. The interaction and coexpression of SBP-1 with SGGLs and HNK-1 glycoproteins, during the perinatal brain development, suggest a functional role for this protein.
Assuntos
Proteínas de Transporte/metabolismo , Glucuronatos/metabolismo , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Anticorpos Monoclonais/farmacologia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/isolamento & purificação , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Glicoproteínas/efeitos dos fármacos , Glicoproteínas/metabolismo , Concentração de Íons de Hidrogênio , Íons , Metabolismo dos Lipídeos , Concentração Osmolar , RatosRESUMO
In the adult cerebellum, sulfoglucuronyl glycolipids (SGGLs) are specifically localized in Purkinje cells and their dendrites in the molecular layer. Other major cell types such as granule neurons and glial cells lack SGGLs. To explain the cell specific localization and the known biphasic expression of SGGLs, enzymic activities of four glycosyltransferases involved in the biosynthesis of SGGLs were studied in murine cerebellar mutants, in distinct cellular layers of rat cerebellum, and in isolated granule neurons during development. The enzymes studied were lactosylceramide: N-acetylglucosaminyl transferase (GlcNAc-Tr), lactotriaosylceramide:galactosyltransferase, neolactotetraosylceramide:glucuronyltransferase, and glucuronylglycolipid:sulfotransferase. In the cerebellum of Purkinje cell-deficient mutants, such as (pcd/pcd) and lurcher (Lc/+) where Purkinje cells are lost, GlcNAc-Tr was absent, but the other three glycosyltransferase were not severely affected. This indicated that the latter three enzymes were localized in other cell types, such as in mature granule neurons and glial cells, in addition to that in Purkinje cells, and the lack of SGGLs in these mutants was due to absence of GlcNAc-Tr. Analyses of the enzymes in the specific micro-dissected cellular layers also showed that Purkinje cell layer and molecular layer (where Purkinje cell dendrites are localized) contained all four enzymes. However, granule neurons and glial cells in the white matter lacked GlcNAc-Tr, but expressed the other three enzymes. It was concluded that the absence of SGGLs in adult granule neurons and glial cells was due to specific deficiency of the GlcNAc-Tr. Although adult granule neurons lacked GlcNAc-Tr and therefore SGGLs, isolated granule neurons from the neonatal cerebellum contained all four enzymes necessary for the synthesis of SGGLs. With development, the activity of GlcNAc-Tr in the isolated granule neurons declined but the other enzymes were not as affected, indicating that immature granule neurons were capable of synthesizing SGGLs and with maturation the synthesis was down-regulated. This also explains the biphasic expression of SGGLs in the developing cerebellum.
Assuntos
Cerebelo/enzimologia , Regulação Enzimológica da Expressão Gênica , Glicolipídeos/genética , N-Acetilglucosaminiltransferases/metabolismo , Animais , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Grânulos Citoplasmáticos/enzimologia , Glicolipídeos/biossíntese , Células de Purkinje/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
The following neolacto glycolipids were identified and their developmental expression was studied in the rat cerebral cortex and cerebellum: Fuc alpha 1-3IIInLcOse4Cer,Fuc alpha 1-3VnLcOse6Cer and (Fuc)2 alpha 1-3III,3VnLcOse6Cer, as well as acidic glycolipids, NeuAc alpha 2-3IVnLcOse4Cer [nLM1], (NeuAc)2 alpha 2-3IVnLcOse4Cer [nLD1], O-acetyl (NeuAc)2 alpha 2-3IVnLcOse4Cer [OAc-nLD1] and their higher neolactosaminyl homologues NeuAc alpha 2-3VlnLcOse6Cer [nHM1] and (NeuAc)2 alpha 2-3VlnLcOse6Cer [nHD1]. These glycolipids were expressed in the cerebral cortex only during embryonic stages and disappeared postnatally. This loss was ascribed to the down regulation of the synthesis of the key precursor LcOse3Cer which is synthesized by the enzyme lactosylceramide: N-acetylglucosaminyl transferase. On the other hand in the cerebellum, these glycolipids increased with postnatal development due to increasing availability of LcOse3Cer. In the cerebellum, only nLM1 and fucosyl-neolactoglycolipids declined after postnatal day 10-15, perhaps due to regulation by other glycosyltransferases. Also, in the cerebellum, nLD1 and nHD1 were shown to be specifically associated with Purkinje cells and their dendrites in the molecular layer and with their axon terminals in the deep cerebellar nuclei, similar to other neolactoglycolipids shown previously.
Assuntos
Envelhecimento/metabolismo , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Cerebrosídeos/biossíntese , Desenvolvimento Embrionário e Fetal , Glicoesfingolipídeos/biossíntese , Animais , Configuração de Carboidratos , Sequência de Carboidratos , Cerebelo/embriologia , Cerebelo/crescimento & desenvolvimento , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Cerebrosídeos/química , Cerebrosídeos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Feminino , Fucose , Glicoesfingolipídeos/química , Glicoesfingolipídeos/isolamento & purificação , Lactose , Antígenos CD15/biossíntese , Antígenos CD15/química , Dados de Sequência Molecular , Gravidez , Células de Purkinje/metabolismo , Ratos , Ratos Sprague-Dawley , Ácidos SiálicosRESUMO
Sulfoglucuronyl carbohydrate linked to neolactotetraose reacts with HNK-1 antibody. The HNK-1 carbohydrate epitope is found in two major glycolipids, several glycoproteins and in some proteoglycans of the nervous system. Most of the HNK-1 reactive glycoproteins so far identified are neural cell adhesion molecules and/or are involved in cell-cell interactions. HNK-1 carbohydrate is highly immunogenic. Several HNK-1-like antibodies, including IgM of some patients with plasma cell abnormalities and having peripheral neuropathy, have been described. This article summarizes published work mainly on sulfoglucuronyl glycolipids, SGGLs and covers: structural requirements of the carbohydrate epitope for binding to HNK-1 and human antibodies, expression of the lipids in various neural areas, stage and region specific developmental expression in CNS and PNS, immunocytochemical localization, loss of expression in Purkinje cell abnormality murine mutations, biosynthetic regulation of expression by a single enzyme N-acetylglucosaminyl transferase, identification of receptor-like carbohydrate binding neural proteins (lectins), and perceived role of the carbohydrate in physiological functions. The latter includes role in: pathogenesis of certain peripheral neuropathies, in migration of neural crest cells, as a ligand in cell-cell adhesion/interaction and as a promoter of neurite outgrowth for motor neurons. Multiple expression of HNK-1 carbohydrate in several molecules and in various neural cell types at specific stages of nervous system development has puzzled investigators as to its specific biological function, but this may also suggest its importance in multiple systems during cell differentiation and migration processes.
Assuntos
Glucuronatos/metabolismo , Glicolipídeos/biossíntese , Sistema Nervoso/metabolismo , Sulfoglicoesfingolipídeos/metabolismo , Animais , Sequência de Carboidratos , Proteínas de Transporte/metabolismo , Glicolipídeos/fisiologia , Camundongos , Dados de Sequência Molecular , Estrutura Molecular , Mutação , Sistema Nervoso/crescimento & desenvolvimentoRESUMO
Neolactoglycolipids are derived from neolactotetraosylceramide (nLcOse4Cer). They are found during the embryonic and neonatal developmental periods in the rat cerebral cortex and disappear shortly after birth. These glycolipids are, however, abundant in the adult cerebellum. Lactotriosylceramide (LcOse3Cer):galactosyltransferase (GT), which catalyzes the terminal step in the biosynthesis of nLcOse4Cer, was characterized in mammalian brain. The enzyme was highly specific for LcOse3Cer, with a terminal GlcNAc beta 1-3Gal-residue, and it did not catalyze the transfer of galactose to other glycolipids studied with alternate carbohydrate residues. The microsomal membrane enzyme required Mn2+ and a detergent for in vitro activity. The optimal pH was 7.4, and the Km value for LcOse3Cer was 34 microM (Vmax = approximately 2 nmol/mg/h). The LcOse3Cer:GT was shown to be different from the GM2:GT and the soluble enzyme lactose synthase A. The specific activity of LcOse3Cer:GT was enriched fivefold higher in the white matter than in the gray matter of young adult rat brain, whereas GM2:GT was enriched only about 1.5-fold higher in the white matter. The developmental expression of LcOse3Cer:GT in the cerebral cortex and cerebellum was not correlative with the levels of nLcOse4Cer in these neural areas. Despite the complete absence of nLcOse4Cer in the cerebral cortex of animals older than 5 days, significant activity of the LcOse3Cer:GT was found even in the adult cortex. In cerebellum, the levels of nLcOse4Cer increased with development, but the specific activity of the enzyme was reduced by 50% soon after birth and then remained practically the same with development.(ABSTRACT TRUNCATED AT 250 WORDS)
Assuntos
Envelhecimento/metabolismo , Encéfalo/enzimologia , Galactosiltransferases/metabolismo , Globosídeos/biossíntese , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Sequência de Carboidratos , Cerebelo/enzimologia , Cerebelo/crescimento & desenvolvimento , Córtex Cerebral/enzimologia , Córtex Cerebral/crescimento & desenvolvimento , Feminino , Galactosiltransferases/biossíntese , Regulação Enzimológica da Expressão Gênica , Concentração de Íons de Hidrogênio , Cinética , Microssomos/enzimologia , Dados de Sequência Molecular , Gravidez , Ratos , Ratos Sprague-Dawley , Especificidade por SubstratoRESUMO
Lactosylceramide N-acetylglucosaminyltransferase (GlcNac-Tr) in the synthesis of lactotriosylceramide (LcOse3Cer) was characterized in the nervous system. The microsomal membrane GlcNAc-Tr required a divalent metal ion, preferably Mn2+, and a nonionic detergent. The pH optimum was around 7.0. The enzyme also transferred GlcNAc to neolactotetraosylceramide (nLcOse4Cer), GM1, and asialo-GM1, but not to other glycolipids. The Km value for lactosylceramide was 21 microM (Vmax = 91 pmol/mg/h), and that for nLcOse4Cer was 35 microM (Vmax = 112 pmol/mg/h). The GlcNAc-Tr for the glycolipids appears to be separate from that for oligosaccharides. The developmental expression of GlcNAc-Tr, both in the cerebral cortex and cerebellum, correlated well with the tissue levels of LcOse3Cer, nLcOse4Cer, sulfoglucuronylglycolipids (SGGLs), and other neolacto series glycolipids (nLSGs). In the cerebral cortex, the specific activity of GlcNAc-Tr decreased sharply from a maximum level at embryonic day 15, and by postnatal day 10 onward, it was undetectable. In the adult cerebral cortex, although significant activities of other glycosyltransferases involved in the subsequent steps of the synthesis of SGGLs were present, the absence of GlcNAc-Tr stymied the formation of LcOse3Cer and therefore the synthesis of nLSGs, including SGGLs. In the cerebellum, the GlcNAc-Tr specific activity declined from the day of birth to postnatal day 3, but later, the activity increased and reached a maximum at postnatal day 15, which correlated with the increasing synthesis of nLSGs. The results indicate that lactosylceramide GlcNAc-Tr is the key regulatory enzyme controlling the differential expression of all nLSGs in the developing nervous system.
Assuntos
Encéfalo/metabolismo , Glicolipídeos/biossíntese , N-Acetilglucosaminiltransferases/metabolismo , Animais , Ligação Competitiva , Encéfalo/embriologia , Encéfalo/enzimologia , Encéfalo/crescimento & desenvolvimento , Sequência de Carboidratos , Dados de Sequência Molecular , Ratos , Ratos Sprague-DawleyRESUMO
Sulfoglucuronylglycolipids (SGGLs) and glycoproteins, reacting with monoclonal antibody HNK-1, are developmentally and spatially regulated in the mammalian cortex and cerebellum. It has been proposed that the HNK-1 carbohydrate epitope is involved in intercellular adhesion and cell-cell interactions. Biochemical analysis and immunocytochemical localization of SGGLs and other neolacto series glycolipids were studied in the leaner mutant mouse cerebellum, where a slow and progressive rostral to caudal degeneration occurs with a gradual loss of both granule cells and Purkinje cells. Biochemical analyses showed that SGGLs and other neolacto series of glycolipids were significantly decreased in the adult leaner cerebellum; however, HNK-1-reactive glycoproteins were not affected. By an immunocytochemical method which selectively localizes the lipid antigens, it is shown that SGGLs are primarily associated with Purkinje cell bodies and their dendrites in the molecular layer and in cerebellar nuclei where Purkinje cell axons terminate. At postnatal day 30 (P30), SGGL immunoreactivity (SGGL-ir) in the leaner cerebellum was reduced moderately compared to normal littermates, which correlated with the minimal degree of Purkinje cell degeneration at this age in leaner and with the biochemical data. At P67 and P90, the SGGL-ir was significantly more reduced in the leaner as Purkinje cell degeneration proceeded. There was a direct correlation between loss of Purkinje cells and SGGL-ir in the cerebellar molecular layer. In both normal and young leaner cerebella, the SGGL-ir in different lobules was not uniform; there were distinct rostrocaudal and mediolateral differences. SGGL-ir was markedly more intense in rostral than in caudal lobules in the vermis, the dividing line being the region immediately caudal to the primary fissure and rostral to the declival sulcus. In the lateral cerebellum, the SGGL-ir was less intense than in the vermis and the rostrocaudal difference was not as pronounced. There was also nonuniformity in the intensity of staining in different folia. The rostrocaudal as well as mediolateral differences in the intensity of SGGL-ir were confirmed independently by biochemical analysis. The differential phenotypic expression of SGGLs and the selective susceptibility to Purkinje cell death in leaner mutant are discussed in relation to the known embryologic and ontogenetic compartmentation of cerebellum.
Assuntos
Anticorpos Monoclonais/imunologia , Cerebelo/metabolismo , Glicolipídeos/biossíntese , Mutação , Animais , Western Blotting , Moléculas de Adesão Celular Neuronais/imunologia , Moléculas de Adesão Celular Neuronais/metabolismo , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Gangliosídeos/metabolismo , Glicolipídeos/imunologia , Imuno-Histoquímica , Laminina/imunologia , Laminina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Células de Purkinje/metabolismoRESUMO
Sulfoglucuronyl glycolipids (SGGLs) are temporally and spatially regulated molecules in the developing nervous system. A novel sulfotransferase (ST) from rat brain which catalyzes the terminal step in the biosynthesis in vitro of SGGLs is described. The enzyme catalyzes a transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate to a hydroxyl group on carbon 3 of the terminal glucuronyl residue in IV3 beta-glucuronyl neolactotetraosylceramide (GlcAnLcOse4Cer) and VI3 beta-glucuronyl neolactohexaosylceramide (GlcAnLcOse6Cer) to form 3-sulfated glucuronyl glycolipids. The enzyme is highly specific for glucuronylglycolipids (GGLs) and requires the free-COOH group of the terminal glucuronic acid for reactivity. GGL:ST present in the microsomal membranes requires Mn2+ ions and a nonionic detergent, Triton X-100 for activity. The optimal pH is 7.2 with Tris-HCl buffer and Km values were 7 microM for 3'-phosphoadenosine 5'-phosphosulfate and 29 microM for GlcAnLcOse4Cer. GGL:ST was shown to be different from previously well studied galactocerebroside:sulfotransferase for the synthesis of myelin membrane-specific lipid sulfatide. This conclusion was based upon several criteria, i.e. including different requirements of incubation conditions for maximal activity, substrate competition experiments, different effects of heat, dithiothreitol, NaCl, and pyridoxal phosphate, as well as different profiles of expression of activity during development of the nervous tissues. The two enzymes were also partially resolved on a pyridoxal phosphate-ligated agarose column. Studies on the developmental expression of the GGL:ST in the rat cerebral cortex and cerebellum showed that it is not a regulatory enzyme controlling the expression of SGGLs in these neural tissues.
Assuntos
Envelhecimento/metabolismo , Encéfalo/enzimologia , Globosídeos/biossíntese , Glicolipídeos/metabolismo , Microssomos/enzimologia , Sulfotransferases/metabolismo , Sulfurtransferases/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Sequência de Carboidratos , Cerebelo/enzimologia , Córtex Cerebral/enzimologia , Cromatografia de Afinidade , Feminino , Glicolipídeos/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Concentração Osmolar , Gravidez , Fosfato de Piridoxal/farmacologia , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato , Sulfotransferases/isolamento & purificação , Sulfurtransferases/isolamento & purificaçãoRESUMO
Monoclonal antibody HNK-1 is an important marker for embryonic neural crest cells and some of their differentiated derivatives. We have identified 3-sulfoglucuronylneolactotetraosylceramide (SGGL-1) as one of the HNK-1 antigens present in cultures of trunk neural crest cells. This lipid was present at 2 days in vitro and increased in amount with time in culture. Other major HNK-1-reactive antigens present in the culture were glycoproteins of apparent molecular masses of 120, 180, and 200 kDa. The 180- and 200-kDa bands were present at 2, 7, and 17 days in vitro, whereas the 120-kDa band was present only at 17 days in vitro. Gangliosides GD3, LD1, and LM1 were also found in the cultures and exhibited distinct temporal patterns of expression. Ganglioside GD3 was present at all stages examined and its expression peaked at 7 days in vitro. In contrast, LD1 was present only at 2 days in vitro and was not detectable at later times. Ganglioside LM1 increased in amount with time in culture in a pattern similar to that seen for SGGL-1. Taken together, these results indicate that several HNK-1-reactive molecules are expressed in neural crest cultures in a temporally regulated manner along with several glycolipids that do not bear this epitope.
Assuntos
Antígenos de Diferenciação/imunologia , Globosídeos/metabolismo , Glicolipídeos/metabolismo , Crista Neural/metabolismo , Animais , Antígenos CD57 , Células Cultivadas , Coturnix/embriologia , Gangliosídeos/metabolismo , Globosídeos/imunologia , Crista Neural/citologia , Proteínas/imunologia , Proteínas/metabolismo , Fatores de TempoRESUMO
HNK-1 antibody reactive carbohydrate epitope carried by glycolipids and glycoproteins has been shown to be involved in cell to cell interactions. It has been proposed that the HNK-1 reactive 3-sulfoglucuronyl carbohydrate epitope in glycolipids may interact with a cell surface receptor to promote the biological response in the developing nervous system. The possible occurrence of such a receptor was examined in rat nervous system. A specific binding of sulfoglycolipids to a 30 kD protein from adult rat cerebellum is described. Little binding was found with neutral glycolipids and gangliosides. The 30 kD protein from cerebellum was partially purified on a sulfatide-octyl-Sepharose affinity column. Binding of sulfoglucuronyl glycolipids to a similar 30 kD protein from forebrain previously identified as amphoterin is also shown. Amphoterin is developmentally regulated and is involved in neural cell adhesion and neurite extension.