Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12333, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811641

RESUMO

Antarctic biodiversity is affected by seasonal sea-ice dynamics driving basal resource availability. To (1) determine the role of intraspecific dietary variability in structuring benthic food webs sustaining Antarctic biodiversity, and (2) understand how food webs and the position of topologically central species vary with sea-ice cover, single benthic individuals' diets were studied by isotopic analysis before sea-ice breakup and afterwards. Isotopic trophospecies (or Isotopic Trophic Units) were investigated and food webs reconstructed using Bayesian Mixing Models. As nodes, these webs used either ITUs regardless of their taxonomic membership (ITU-webs) or ITUs assigned to species (population-webs). Both were compared to taxonomic-webs based on taxa and their mean isotopic values. Higher resource availability after sea-ice breakup led to simpler community structure, with lower connectance and linkage density. Intra-population diet variability and compartmentalisation were crucial in determining community structure, showing population-webs to be more complex, stable and robust to biodiversity loss than taxonomic-webs. The core web, representing the minimal community 'skeleton' that expands opportunistically while maintaining web stability with changing resource availability, was also identified. Central nodes included the sea-urchin Sterechinus neumayeri and the bivalve Adamussium colbecki, whose diet is described in unprecedented detail. The core web, compartmentalisation and topologically central nodes represent crucial factors underlying Antarctica's rich benthic food web persistence.


Assuntos
Biodiversidade , Dieta , Cadeia Alimentar , Regiões Antárticas , Animais , Teorema de Bayes , Camada de Gelo
2.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38070187

RESUMO

Climate change significantly impacts global forests, leading to tree decline and dieback. To cope with climate change, trees develop several functional traits, such as intra-annual density fluctuations (IADFs) in tree rings. The formation of these traits facilitates trees to optimize resource allocation, allowing them to withstand periods of stress and eventually recover when the conditions become favourable again. This study focuses on a Pinus pinaster Aiton forest in a warm, drought-prone Mediterranean area, comparing two growing seasons with different weather patterns. The innovative continuous monitoring approach used in this study combines high-resolution monitoring of sap flow (SF), analysis of xylogenesis and quantitative wood anatomy. Our results revealed the high plasticity of P. pinaster in water use and wood formation, shedding light on the link between IADFs and tree conductance. Indeed, the capacity to form large cells in autumn (as IADFs) improves the total xylem hydraulic conductivity of this species. For the first time, a continuous SF measurement system captured the dynamics of bimodal SF during the 2022 growing season in conjunction with the bimodal growth pattern observed through xylogenesis monitoring. These results highlight the intricate interplay between environmental conditions, water use, wood formation and tree physiology, providing valuable insights into the acclimation mechanisms employed by P. pinaster to cope with weather fluctuations.


Assuntos
Pinus , Madeira , Madeira/anatomia & histologia , Xilema/fisiologia , Pinus/fisiologia , Estações do Ano , Secas , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...