Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 11: 1451536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290994

RESUMO

Alzheimer's disease (AD) is characterized by classic hallmarks such as amyloid plaques and neurofibrillary tangles, however, intensive research has broadened its scope to explore additional underlying mechanisms. Notably, disruptions in metal homeostasis, particularly involving copper, have gained significant attention. In AD pathology, an imbalance is evident: there is an excess of extracellular copper alongside a deficiency in intracellular copper in brain tissue. Our previous work demonstrated that α-lipoic acid (LA) can effectively shift copper from the extracellular space to the intracellular environment in a neuronal cell model. However, the precise mechanism of action and role of LA in copper metabolism remained elusive. In this study, we compared the cellular effects of LA with those of different synthetic copper-binding ligands: diethyldithiocarbamate (DETC), clioquinol (CQ), D-penicillamine (D-PA) and elesclomol (ES). Using differentiated SH-SY5Y cell culture as a neuronal model, we found that, unlike other synthetic compounds, natural ligand LA is not toxic in the presence of extracellular copper, even at high doses. LA gradually increased intracellular copper levels over 24 h. In contrast, DETC, CQ, and ES acted as fast copper ionophores, potentially explaining their higher toxicity compared to LA. D-PA did not facilitate copper uptake into cells. We demonstrated that a slow increase of LA inside the cells is enhanced in the presence of copper. Furthermore, the ability of LA to modulate the equilibrium of extra- and intracellular copper was evident when we added copper isotope 65Cu. The ratio of copper isotopes changed rapidly, reflecting the impact of LA on the equilibrium of copper distribution without affecting the copper transport network. Our results provide compelling evidence that α-lipoic acid holds promise as a non-toxic agent capable of normalizing copper metabolism in Alzheimer's disease.

2.
Proc Natl Acad Sci U S A ; 120(40): e2305961120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37751556

RESUMO

α-lipoic acid (LA) is an essential cofactor for mitochondrial dehydrogenases and is required for cell growth, metabolic fuel production, and antioxidant defense. In vitro, LA binds copper (Cu) with high affinity and as an endogenous membrane permeable metabolite could be advantageous in mitigating the consequences of Cu overload in human diseases. We tested this hypothesis in 3T3-L1 preadipocytes with inactivated Cu transporter Atp7a; these cells accumulate Cu and show morphologic changes and mitochondria impairment. Treatment with LA corrected the morphology of Atp7a-/- cells similar to the Cu chelator bathocuproinedisulfonate (BCS) and improved mitochondria function; however, the mechanisms of LA and BCS action were different. Unlike BCS, LA did not decrease intracellular Cu but instead increased selenium levels that were low in Atp7a-/- cells. Proteome analysis confirmed distinct cell responses to these compounds and identified upregulation of selenoproteins as the major effect of LA on preadipocytes. Upregulation of selenoproteins was associated with an improved GSH:GSSG ratio in cellular compartments, which was lowered by elevated Cu, and reversal of protein oxidation. Thus, LA diminishes toxic effects of elevated Cu by improving cellular redox environment. We also show that selenium levels are decreased in tissues of a Wilson disease animal model, especially in the liver, making LA an attractive candidate for supplemental treatment of this disease.


Assuntos
Selênio , Ácido Tióctico , Animais , Humanos , Ácido Tióctico/farmacologia , Cobre , Selênio/farmacologia , Oxirredução , Selenoproteínas/genética
3.
FEBS Open Bio ; 8(6): 923-931, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29928572

RESUMO

Zinc finger (ZF) protein motifs, stabilized by binding of Zn(II), typically function as interaction modules that bind nucleic acids, proteins and other molecules. The elucidation of the redox states of ZF proteins in cellular conditions, which depend on their midpoint redox potentials, is important for understanding of ZF functioning. In the present study we determined the midpoint redox potentials for representatives of Cys2His2 and Cys4 types of ZF proteins in apo and Zn(II)-bound forms using electrospray ionization mass spectrometry. The midpoint redox potentials of the apo forms of Cys2His2 and Cys4 ZF proteins were -326 and -365 mV (pH 7.5), respectively. These values are close to the cytosolic redox potential of approx. -350 mV (pH 7.5) and thus we can conclude that the apo form of Cys2His2-type ZF proteins is predominantly reduced but apo forms of Cys4-type ZF proteins should be substantially oxidized in the cytoplasm. As expected, Zn(II) binding stabilized the reduced forms of both ZF proteins: the corresponding redox potential values were -284 and -301 mV, respectively. Consequently, binding of Zn(II) ions to ZF motifs can act as a sensitive switch that activates the functioning of the ZF motifs within the cell, and also protects them from oxidation and can function as part of a redox-sensitive regulation mechanism of cellular functions.

4.
Sci Rep ; 8(1): 1463, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362485

RESUMO

Wilson disease is an autosomal recessive genetic disorder caused by loss-of-function mutations in the P-type copper ATPase, ATP7B, which leads to toxic accumulation of copper mainly in the liver and brain. Wilson disease is treatable, primarily by copper-chelation therapy, which promotes copper excretion. Although several de-coppering drugs are currently available, their Cu(I)-binding affinities have not been quantitatively characterized. Here we determined the Cu(I)-binding affinities of five major de-coppering drugs - D-penicillamine, trientine, 2,3-dimercapto-1-propanol, meso-2,3-dimercaptosuccinate and tetrathiomolybdate - by exploring their ability to extract Cu(I) ions from two Cu(I)-binding proteins, the copper chaperone for cytochrome c oxidase, Cox17, and metallothionein. We report that the Cu(I)-binding affinity of these drugs varies by four orders of magnitude and correlates positively with the number of sulfur atoms in the drug molecule and negatively with the number of atoms separating two SH groups. Based on the analysis of structure-activity relationship and determined Cu(I)-binding affinity, we hypothesize that the endogenous biologically active substance, α-lipoic acid, may be suitable for the treatment of Wilson disease. Our hypothesis is supported by cell culture experiments where α-lipoic acid protected hepatic cells from copper toxicity. These results provide a basis for elaboration of new generation drugs that may provide better therapeutic outcomes.


Assuntos
Quelantes/metabolismo , Cobre/metabolismo , Hepatócitos/citologia , Ácido Tióctico/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Linhagem Celular , Proliferação de Células , Quelantes/farmacologia , Cobre/toxicidade , Proteínas de Transporte de Cobre , Hepatócitos/efeitos dos fármacos , Degeneração Hepatolenticular/tratamento farmacológico , Humanos , Metalotioneína/metabolismo , Penicilamina/metabolismo , Penicilamina/farmacologia , Ácido Tióctico/uso terapêutico , Trientina/metabolismo , Trientina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...