Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 3049, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197552

RESUMO

Astrocytes utilize both glycolytic and mitochondrial pathways to power cellular processes that are vital to maintaining normal CNS functions. These cells also mount inflammatory and acute phase reactive programs in response to diverse stimuli. While the metabolic functions of astrocytes under homeostatic conditions are well-studied, the role of cellular bioenergetics in astrocyte reactivity is poorly understood. Teriflunomide exerts immunomodulatory effects in diseases such as multiple sclerosis by metabolically reprogramming lymphocytes and myeloid cells. We hypothesized that teriflunomide would constrain astrocytic inflammatory responses. Purified murine astrocytes were grown under serum-free conditions to prevent acquisition of a spontaneous reactive state. Stimulation with TNFα activated NFκB and increased secretion of Lcn2. TNFα stimulation increased basal respiration, maximal respiration, and ATP production in astrocytes, as assessed by oxygen consumption rate. TNFα also increased glycolytic reserve and glycolytic capacity of astrocytes but did not change the basal glycolytic rate, as assessed by measuring the extracellular acidification rate. TNFα specifically increased mitochondrial ATP production and secretion of Lcn2 required ATP generated by oxidative phosphorylation. Inhibition of dihydroorotate dehydrogenase via teriflunomide transiently increased both oxidative phosphorylation and glycolysis in quiescent astrocytes, but only the increased glycolytic ATP production was sustained over time, resulting in a bias away from mitochondrial ATP production even at doses down to 1 µM. Preconditioning with teriflunomide prevented the TNFα-induced skew toward oxidative phosphorylation, reduced mitochondrial ATP production, and reduced astrocytic inflammatory responses, suggesting that this drug may limit neuroinflammation by acting as a metabolomodulator.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Astrócitos/metabolismo , Crotonatos/farmacologia , Hidroxibutiratos/farmacologia , Inflamação/metabolismo , Nitrilas/farmacologia , Toluidinas/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Células Cultivadas , Quimiocinas/metabolismo , Metabolismo Energético/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Lipocalina-2/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
3.
Aging (Albany NY) ; 12(14): 15134-15156, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32640422

RESUMO

Multiple sclerosis (MS) is a central nervous system inflammatory demyelinating disease and the most common cause of non-traumatic disability in young adults. Despite progress in the treatment of the active relapsing disease, therapeutic options targeting irreversible progressive decline remain limited. Studies using skin fibroblasts derived from patients with neurodegenerative disorders demonstrate that cell stress pathways and bioenergetics are altered when compared to healthy individuals. However, findings in MS skin fibroblasts are limited. Here, we collected skin fibroblasts from 24 healthy control individuals, 30 patients with MS, and ten with amyotrophic lateral sclerosis (ALS) to investigate altered cell stress profiles. We observed endoplasmic reticulum swelling in MS skin fibroblasts, and increased gene expression of cell stress markers including BIP, ATF4, CHOP, GRP94, P53, and P21. When challenged against hydrogen peroxide, MS skin fibroblasts had reduced resiliency compared to ALS and controls. Mitochondrial and glycolytic functions were perturbed in MS skin fibroblasts while exhibiting a significant increase in lactate production over ALS and controls. Our results suggest that MS skin fibroblasts have an underlying stress phenotype, which may be disease specific. Interrogating MS skin fibroblasts may provide patient specific molecular insights and aid in prognosis, diagnosis, and therapeutic testing enhancing individualized medicine.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Esclerose Lateral Amiotrófica , Retículo Endoplasmático , Fibroblastos/metabolismo , Glicoproteínas de Membrana/metabolismo , Esclerose Múltipla , Fator de Transcrição CHOP/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Variação Biológica da População , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Metabolismo Energético/fisiologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/metabolismo , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Medicina de Precisão , Pele/patologia
4.
Elife ; 82019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31682229

RESUMO

Alexander disease (AxD) is a fatal neurodegenerative disorder caused by mutations in glial fibrillary acidic protein (GFAP), which supports the structural integrity of astrocytes. Over 70 GFAP missense mutations cause AxD, but the mechanism linking different mutations to disease-relevant phenotypes remains unknown. We used AxD patient brain tissue and induced pluripotent stem cell (iPSC)-derived astrocytes to investigate the hypothesis that AxD-causing mutations perturb key post-translational modifications (PTMs) on GFAP. Our findings reveal selective phosphorylation of GFAP-Ser13 in patients who died young, independently of the mutation they carried. AxD iPSC-astrocytes accumulated pSer13-GFAP in cytoplasmic aggregates within deep nuclear invaginations, resembling the hallmark Rosenthal fibers observed in vivo. Ser13 phosphorylation facilitated GFAP aggregation and was associated with increased GFAP proteolysis by caspase-6. Furthermore, caspase-6 was selectively expressed in young AxD patients, and correlated with the presence of cleaved GFAP. We reveal a novel PTM signature linking different GFAP mutations in infantile AxD.


Assuntos
Doença de Alexander/metabolismo , Biomarcadores/metabolismo , Caspases/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Adulto , Doença de Alexander/diagnóstico , Doença de Alexander/genética , Astrócitos/metabolismo , Sítios de Ligação/genética , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Proteína Glial Fibrilar Ácida/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactente , Filamentos Intermediários/metabolismo , Mutação , Fosforilação , Proteólise , Índice de Gravidade de Doença
5.
JCI Insight ; 4(18)2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31534057

RESUMO

Insulin resistance associates with increased risk for cognitive decline and dementia; however, the underpinning mechanisms for this increased risk remain to be fully defined. As insulin resistance impairs mitochondrial oxidative metabolism and increases ROS in skeletal muscle, we considered whether similar events occur in the brain, which - like muscle - is rich in insulin receptors and mitochondria. We show that high-fat diet-induced (HFD-induced) brain insulin resistance in mice decreased mitochondrial ATP production rate and oxidative enzyme activities in brain regions rich in insulin receptors. HFD increased ROS emission and reduced antioxidant enzyme activities, with the concurrent accumulation of oxidatively damaged mitochondrial proteins and increased mitochondrial fission. Improvement of insulin sensitivity by both aerobic exercise and metformin ameliorated HFD-induced abnormalities. Moreover, insulin-induced enhancement of ATP production in primary cortical neurons and astrocytes was counteracted by the insulin receptor antagonist S961, demonstrating a direct effect of insulin resistance on brain mitochondria. Further, intranasal S961 administration prevented exercise-induced improvements in ATP production and ROS emission during HFD, supporting that exercise enhances brain mitochondrial function by improving insulin action. These results support that insulin sensitizing by exercise and metformin restores brain mitochondrial function in insulin-resistant states.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Resistência à Insulina/fisiologia , Insulina/metabolismo , Metformina/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Condicionamento Físico Animal/fisiologia , Receptor de Insulina/metabolismo , Administração Intranasal , Administração Oral , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/patologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Glucose/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Peptídeos/administração & dosagem , Cultura Primária de Células , Receptor de Insulina/antagonistas & inibidores , Comportamento Sedentário
6.
FASEB J ; 32(5): 2841-2854, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401610

RESUMO

Vimentin is a cytoskeletal intermediate filament protein that is expressed in mesenchymal cells and cancer cells during the epithelial-mesenchymal transition. The goal of this study was to identify vimentin-targeting small molecules by using the Tocriscreen library of 1120 biochemically active compounds. We monitored vimentin filament reorganization and bundling in adrenal carcinoma SW13 vimentin-positive (SW13-vim+) cells via indirect immunofluorescence. The screen identified 18 pharmacologically diverse hits that included 2 statins-simvastatin and mevastatin. Simvastatin induced vimentin reorganization within 15-30 min and significant perinuclear bundling within 60 min (IC50 = 6.7 nM). Early filament reorganization coincided with increased vimentin solubility. Mevastatin produced similar effects at >1 µM, whereas the structurally related pravastatin and lovastatin did not affect vimentin. In vitro vimentin filament assembly assays revealed a direct targeting mechanism, as determined biochemically and by electron microscopy. In SW13-vim+ cells, simvastatin, but not pravastatin, reduced total cell numbers (IC50 = 48.1 nM) and promoted apoptosis after 24 h. In contrast, SW13-vim- cell viability was unaffected by simvastatin, unless vimentin was ectopically expressed. Simvastatin similarly targeted vimentin filaments and induced cell death in MDA-MB-231 (vim+), but lacked effect in MCF7 (vim-) breast cancer cells. In conclusion, this study identified vimentin as a direct molecular target that mediates simvastatin-induced cell death in 2 different cancer cell lines.-Trogden, K. P., Battaglia, R. A., Kabiraj, P., Madden, V. J., Herrmann, H., Snider, N. T. An image-based small-molecule screen identifies vimentin as a pharmacologically relevant target of simvastatin in cancer cells.


Assuntos
Neoplasias das Glândulas Suprarrenais/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Sinvastatina/farmacologia , Vimentina/metabolismo , Neoplasias das Glândulas Suprarrenais/metabolismo , Neoplasias das Glândulas Suprarrenais/ultraestrutura , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/ultraestrutura , Morte Celular , Feminino , Humanos , Lovastatina/análogos & derivados , Lovastatina/farmacologia , Células MCF-7 , Microscopia de Fluorescência , Proteínas de Neoplasias/antagonistas & inibidores , Vimentina/antagonistas & inibidores
7.
J Vis Exp ; (123)2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28570536

RESUMO

Intermediate filaments (IFs), together with actin filaments and microtubules, form the cytoskeleton - a critical structural element of every cell. Normal functioning IFs provide cells with mechanical and stress resilience, while a dysfunctional IF cytoskeleton compromises cellular health and has been associated with many human diseases. Post-translational modifications (PTMs) critically regulate IF dynamics in response to physiological changes and under stress conditions. Therefore, the ability to monitor changes in the PTM signature of IFs can contribute to a better functional understanding, and ultimately conditioning, of the IF system as a stress responder during cellular injury. However, the large number of IF proteins, which are encoded by over 70 individual genes and expressed in a tissue-dependent manner, is a major challenge in sorting out the relative importance of different PTMs. To that end, methods that enable monitoring of PTMs on IF proteins on an organism-wide level, rather than for isolated members of the family, can accelerate research progress in this area. Here, we present biochemical methods for the isolation of the total, detergent-soluble, and detergent-resistant fraction of IF proteins from 9 different mouse tissues (brain, heart, lung, liver, small intestine, large intestine, pancreas, kidney, and spleen). We further demonstrate an optimized protocol for rapid isolation of IF proteins by using lysing matrix and automated homogenization of different mouse tissues. The automated protocol is useful for profiling IFs in experiments with high sample volume (such as in disease models involving multiple animals and experimental groups). The resulting samples can be utilized for various downstream analyses, including mass spectrometry-based PTM profiling. Utilizing these methods, we provide new data to show that IF proteins in different mouse tissues (brain and liver) undergo parallel changes with respect to their expression levels and PTMs during aging.


Assuntos
Envelhecimento/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Encéfalo/metabolismo , Feminino , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos CBA , Especificidade de Órgãos
8.
ACS Chem Neurosci ; 7(11): 1519-1530, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27635664

RESUMO

Amyloid beta (Aß) aggregation is generally associated with Alzheimer's onset. Here, we demonstrate that incubation of dopaminergic SH-SY5Y cells with an Aß peptide fragment (an 11-mer composed of residues 25-35; Aß (25-35)) results in elevated intracellular nitrosative stress and induces chemical mutation of protein disulfide isomerase (PDI), an endoplasmic reticulum-resident oxidoreductase chaperone. Furthermore, Aß (25-35) provokes aggregation of both the minor and major biomarkers of Parkinson's disease, namely, synphilin-1 and α-synuclein, respectively. Importantly, fluorescence studies demonstrate that Aß (25-35) triggers colocalization of these Parkinsonian biomarkers to form Lewy-body-like aggregates, a key and irreversible milestone in the neurometabolic cascade leading to Parkinson's disease. In addition, fluorescence assays also reveal direct, aggregation-seeding interactions between Aß (25-35), PDI and α-synuclein, suggesting neuronal pathogenesis occurs via prion-type cross-transfectivity. These data indicate that the introduction of an Alzheimer's-associated biomarker in dopaminergic cells is proliferative, with the percolative effect exercised via dual, independent, Parkinson-pathogenic pathways, one stress-derived and the other prion-like. The results define a novel molecular roadmap for Parkinsonian transfectivity via an Alzheimeric burden and reveal the involvement of PDI in amyloid beta induced Parkinson's.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Proteínas de Transporte/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transtornos Parkinsonianos/metabolismo , Fragmentos de Peptídeos/toxicidade , Agregação Patológica de Proteínas , alfa-Sinucleína/metabolismo , Animais , Apoptose/fisiologia , Biomarcadores/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Citosol/metabolismo , Citosol/patologia , Neurônios Dopaminérgicos/patologia , Difusão Dinâmica da Luz , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Camundongos , Microscopia Confocal , Proteínas do Tecido Nervoso/genética , Transtornos Parkinsonianos/patologia , Espécies Reativas de Oxigênio/metabolismo , Transfecção , alfa-Sinucleína/genética
9.
Protein J ; 34(5): 349-58, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26385697

RESUMO

Endoplasmic reticulum (ER) proteins including protein disulfide isomerase (PDI) are playing crucial roles in maintaining appropriate protein folding. Under nitrosative stress, an excess of nitric oxide (NO) radical species induced the S-nitrosylation of PDI cysteines which eliminate its isomerase and oxidoreductase capabilities. In addition, the S-nitrosylation-PDI complex is the cause of aggregation especially of the α-synuclein (α-syn) protein (accumulation of Lewy-body aggregates). We recently identified a potent antioxidant small molecule, Ferrostatin-1 (Fer-1), that was able to inhibit a non-apoptotic cell death named ferroptosis. Ferroptosis cell death involved the generation of oxidative stress particularly lipid peroxide. In this work, we reported the neuroprotective role of ferrostatin-1 under rotenone-induced oxidative stress in dopaminergic neuroblastoma cells (SH-SY5Y). We first synthesized the Fer-1 and confirmed that it is not toxic toward the SH-SY5Y cells at concentrations up to 12.5 µM. Second, we showed that Fer-1 compound quenched the commercially available stable radical, the 2,2-diphenyl-1-picrylhydrazyl (DPPH), in non-cellular assay at 82 %. Third, Fer-1 inhibited the ROS/RNS generated under rotenone insult in SH-SY5Y cells. Fourth, we revealed the effective role of Fer-1 in ER stress mediated activation of apoptotic pathway. Finally, we reported that Fer-1 mitigated rotenone-induced α-syn aggregation.


Assuntos
Cicloexilaminas/farmacologia , Dopamina/metabolismo , Neuroblastoma/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Neuroblastoma/fisiopatologia , Neurônios/citologia , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rotenona/toxicidade
10.
ACS Chem Neurosci ; 5(12): 1209-20, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25247703

RESUMO

Nitrosative stress mediated S-nitrosylation (SNO) of protein disulfide isomerase (PDI), a housekeeping oxidoreductase, has been implicated in the pathogenesis of sporadic Parkinson's (PD) and Alzheimer's (AD) diseases. Previous cell line studies have indicated that SNO-PDI formation provokes synphilin-1 aggregation, the minor Parkinsonian biomarker protein. Yet no work exists investigating whether SNO-PDI induces α-synuclein aggregation, the major Lewy body constituent associated with Parkinson's pathogenesis. Here, we report that SNO-PDI formation is linked to the aggregation of α-synuclein and also provokes α-synuclein:synphilin-1 deposits (Lewy-body-like debris) normally found in the PD brain. Furthermore, we have examined the ability of a small molecule, 2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chromene-5,10-dione (ellagic acid; EA) to scavenge NOx radicals and to protect cells from SNO-PDI formation via rotenone insult both, cell-based and cell-independent in vitro experiments. Furthermore, EA not only mitigates nitrosative-stress-induced aggregation of synphilin-1 but also α-synuclein and α-synuclein:synphilin-1 composites (Lewy-like neurites) in PC12 cells. Mechanistic analyses of the neuroprotective phenomena revealed that EA lowered rotenone-instigated reactive oxygen species (ROS) and reactive nitrogen species (RNS) in PC12 cells, imparted antiapoptotic tributes, and directly interfered with SNO-PDI formation. Lastly, we demonstrate that EA can bind human serum albumin (HSA). These results collectively indicate that small molecules can provide a therapeutic foothold for overcoming Parkinson's through a prophylactic approach.


Assuntos
Ácido Elágico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Animais , Proteínas de Transporte/metabolismo , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico/metabolismo , Células PC12 , Transtornos Parkinsonianos/sangue , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Ligação Proteica/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , alfa-Sinucleína/metabolismo
11.
Cell Biol Int ; 38(4): 511-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24375813

RESUMO

Protein disulfide isomerase (PDI), an important endoplasmic reticulum-resident oxidoreductase chaperone can bind to estrogens as well as intact with its receptor proteins [i.e. estrogen receptors (ER) α and ß]. It has been postulated that PDI also acts as an intracellular 17ß-estradiol (E2)-binding protein that transports and accumulates E2 in live cells. Drop in E2 level promotes dissociation of E2 from PDI and released in cytosol; the released E2 can augment estrogen receptor-mediated transcriptional activity and mitogenic action in cultured cells by modulating the ERß/ERα ratio. In this study, we observed rotenone-induced damage to PDI leads to significant increase in ERß/ERα ratio by down-regulating ERα and up-regulating ERß. We demonstrated that nitrosative stress induced disruption of the cellular estrogenic status can be prevented through diphenyl difluoroketone (EF24, curcumin analog) intervention by protecting PDI from reactive oxygen species (ROS)-induced damage. Together, our study suggests that both PDI and EF24 can play a vital role in maintaining cellular estrogenic homeostasis.


Assuntos
Compostos de Benzilideno/farmacologia , Estradiol/metabolismo , Piperidonas/farmacologia , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Rotenona/toxicidade , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Regulação para Baixo/efeitos dos fármacos , Receptor alfa de Estrogênio/análise , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Microscopia Confocal , Estresse Oxidativo/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/análise , Isomerases de Dissulfetos de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos
12.
Biochem Biophys Res Commun ; 426(3): 438-44, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22974977

RESUMO

Mitochondrial dysfunction, leading to elevated levels of reactive oxygen species, is associated with the pathogenesis of neurodegenerative disorders. Rotenone, a mitochondrial stressor induces caspase-9 and caspase-3 activation leading proteolytic cleavage of substrate nuclear poly(ADP-ribose) polymerase (PARP). PARP cleavage is directly related to apoptotic cell death. In this study, we have monitored the aggregation of green-fluorescent protein (GFP)-tagged synphilin-1, as a rotenone-induced Parkinsonia-onset biomarker. We report that the innate ketone body, Na-D-ß-hydroxybutyrate (NaßHB) reduces markedly the incidence of synphilin-1 aggregation. Furthermore, our data reveal that the metabolic byproduct also prevents rotenone-induced caspase-activated apoptotic cell death in dopaminergic SH-SY5Y cells. Together, these results suggest that NaßHB is neuroprotective; it attenuates effects originating from mitochondrial insult and can serve as a scaffold for the design and development of sporadic neuropathies.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Fármacos Neuroprotetores/farmacologia , Nitratos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Transporte/análise , Caspases/metabolismo , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/metabolismo , Humanos , Doenças Mitocondriais/metabolismo , Necrose , Proteínas do Tecido Nervoso/análise , Nitrosação , Doença de Parkinson/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Rotenona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...