Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 39(11): 304, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37691038

RESUMO

ß-mannanase catalyzes the hydrolysis of mannans ß-1,4-mannosidic linkages to produce industrially relevant oligosaccharides. These enzymes have numerous important applications in the detergent, food, and feed industries, particularly those that are resistant to harsh environmental conditions such as salts and heat. While, moderately salt-tolerant ß-mannanases are already reported, existence of a high halotolerant ß-mannanase is still elusive. This study aims to report the first purification and characterization of ManH1, an extremely halotolerant ß-mannanase from the halotolerant B. velezensis strain H1. Electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS) analysis revealed a single major peak with a molecular mass of 37.8 kDa demonstrating its purity. The purified enzyme showed a good thermostability as no activity was lost after a 48 h incubation under optimal conditions of 50 °C and pH 5.5. The enzyme's salt activation nature was revealed when its maximum activity was obtained in the presence of 4 M NaCl, it doubled compared to the no-salt condition. Moreover, NaCl strengthens its resistance to thermal denaturation, as its melting temperature (Tm) increased steadily with increasing NaCl concentrations reaching 75.5 °C in the presence of 2.5 M NaCl. The Km and Vmax values were 5.63 mg/mL and 333.33 µmol/min/mL, respectively, using carob galactomannan (CG) as a substrate. The enzyme showed a significant ability to produce manno-oligosaccharides (MOS) from lignocellulosic biomass releasing 13 mg/mL of reducing sugars from olive mill wastes (OMW) after 24 h incubation. The results revealed that this enzyme may have significant commercial values for agro-waste treatment, and other potential applications.


Assuntos
Bacillus , Cloreto de Sódio , beta-Manosidase , Biomassa
2.
Mycologia ; 115(4): 437-455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37216583

RESUMO

Optimization of xylanase and cellulase production by a newly isolated Aspergillus fumigatus strain grown on Stipa tenacissima (alfa grass) biomass without pretreatment was carried out using a Box-Behnken design. First, the polysaccharides of dried and ground alfa grass were characterized using chemical methods (strong and diluted acid). The effect of substrate particle size on xylanase and carboxymethylcellulase (CMCase) production by the selected and identified strain was then investigated. Thereafter, experiments were statistically planned with a Box-Behnken design to optimize initial pH, cultivation temperature, moisture content, and incubation period using alfa as sole carbon source. The effect of these parameters on the two enzyme production was evaluated using the response surface method. Analysis of variance was also carried out, and production of the enzymes was expressed using a mathematical equation depending on the influencing factors. The effects of individual, interaction, and square terms on production of both enzymes were represented using the nonlinear regression equations with significant R2 and P-values. Xylanase and CMCase production levels were enhanced by 25% and 27%, respectively. Thus, this study demonstrated for the first time the potential of alfa as a raw material to produce enzymes without any pretreatment. A set of parameter combinations was found to be effective for the production of xylanase and CMCase by A. fumigatus in an alfa-based solid-state fermentation.


Assuntos
Aspergillus fumigatus , Poaceae , Biomassa , Fermentação , Temperatura , Concentração de Íons de Hidrogênio
3.
Arch Microbiol ; 204(11): 681, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316590

RESUMO

Facing the critical issue of high production costs for cellulase, numerous studies have focused on improving the efficiency of cellulase production by potential cellulolytic microorganisms using agricultural wastes as substrates, extremophilic cellulases, in particular, are crucial in the biorefinery process because they can maintain activity under harsh environmental conditions. This study aims to investigate the ability of a potential carboxymethylcellulose-hydrolyzing bacterial strain H1, isolated from an Algerian saline soil and identified as Bacillus velezensis, to use untreated olive mill wastes as a substrate for the production of an endo-1,4-ß-glucanase. The enzyme was purified 44.9 fold using only two steps: ultrafiltration concentration and ion exchange chromatography, with final recovery of 80%. Its molecular mass was estimated to be 26 kDa by SDS-PAGE. Enzyme identification by LC-MS analysis showed 40% identity with an endo-1,3-1,4-ß-glucanase of GH-16 family. The highest enzymatic activity was significantly measured on barley ß-glucan (604.5 U/mL) followed by lichenan and carboxymethylcellulose as substrates, confirming that the studied enzyme is an endo-1,4-ß-glucanase. Optimal enzymatic activity was at pH 6.0-6.5 and at 60-65 °C. It was fairly thermotolerant, retaining 76.9% of the activity at 70 °C, and halotolerant, retaining 70% of its activity in the presence of 4 M NaCl. The enzyme had a Vmax of 625 U/min/mL and a high affinity with barley ß-glucan resulting a Km of 0.69 mg/mL. It also showed a significant ability to release cello-oligosaccharides. Based on such data, the H1 endo-1,4-ß-glucanase may have significant commercial values for industry, argo-waste treatment, and other biotechnological applications.


Assuntos
Celulase , Olea , beta-Glucanas , Celulase/metabolismo , Carboximetilcelulose Sódica , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Especificidade por Substrato
4.
Microbiol Spectr ; 10(5): e0024822, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36214685

RESUMO

The interest and exploration of biodiversity in subsurface ecosystems have increased significantly during the last 2 decades. The aim of this study was to investigate the in vitro probiotic properties of spore-forming bacteria isolated from deep caves. Two hundred fifty spore-forming microbes were enriched from sediment samples from 10 different pristine caves in Algeria at different depths. Isolates showing nonpathogenic profiles were screened for their potential to produce digestive enzymes (gliadinase and beta-galactosidase) in solid and liquid media, respectively. Different probiotic potentialities were studied, including (i) growth at 37°C, (ii) survival in simulated gastric juice, (iii) survival in simulated intestinal fluid, and (iv) antibiotic sensitivity and cell surface properties. The results showed that out of 250 isolates, 13 isolates demonstrated nonpathogenic character, probiotic potentialities, and ability to hydrolyze gliadin and lactose in solution. These findings suggest that a selection of cave microbes might serve as a source of interesting candidates for probiotics. IMPORTANCE Previous microbial studies of subsurface ecosystems like caves focused mainly on the natural biodiversity in these systems. So far, only a few studies focused on the biotechnological potential of microbes in these systems, focusing in particular on their antibacterial potential, antibiotic production, and, to some extent, enzymatic potential. This study explores whether subsurface ecosystems can serve as an alternative source for microbes relevant to probiotics. The research focused on the ability of cave microbes to degrade two substrates (lactose and gliadin) that cause common digestive disorders. Since these enzymes may prove to be useful in food processing and in reducing the effect of lactose and gliadin digestion within intolerant patients, isolation of microbes such as in this study may expand the possibilities of developing alternative strategies to deal with these intolerances.


Assuntos
Gliadina , Probióticos , Humanos , Argélia , Lactose , Ecossistema , Bactérias , Esporos , Antibacterianos/farmacologia , beta-Galactosidase
5.
Curr Microbiol ; 77(3): 443-451, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31894376

RESUMO

Fengycin antibiotic displays a strong antifungal activity and inhibits the growth of a wide range of plant pathogens especially filamentous fungi. The main objective of the present study is to characterize fengycin variants produced by B. amyloliquefaciens strain (ET). LC-MS analysis of fengycin extracts has shown several molecular ion peaks corresponding to conventional fengycin homologues (MH + : m/z 1463.9; 1491.9; 1506) and some new ones (MH + : m/z 1433; 1447; 1461; and 1477). Further characterization of these precursor ions was carried out by LC-MS.MS analysis. Reporter fragment ions were observed (named A and B), they correspond to the cleavage of Orn2-Tyr3 (A), Glu1-Orn2 (B), and used for identifying fengycin variants. The reporter fragment couple ions [A/B] at [m/z 966.5/1080.5] and [m/z 994.4 /1108.5] represent fengycin A and B, respectively. The diagnostic ions at ([m/z 980/1094]) may correspond to fengycin C3, D, S or B2. Interestingly, unknown diagnostic product ions at [m/z 951/1065] and [m/z 979/1093] were detected for the first time in this study which prove that they correspond to new fengycin variants, named fengycin X and fengycin Y, respectively. The fengycin X results from a substitution of the glutamine amino acid (Q), at position 8 of the fengycin A peptide part, by an isoleucine (I) or a leucine (L) residue. This mutation should be the same in fengycin Y but compared to fengycin B.


Assuntos
Bacillus amyloliquefaciens/química , Bacillus amyloliquefaciens/genética , Lagos/microbiologia , Lipopeptídeos/química , Argélia , Substituição de Aminoácidos , Glutamina/genética , Isoleucina/genética , Leucina/genética , Mutação , Águas Salinas , Espectrometria de Massas em Tandem
6.
Bioorg Chem ; 96: 103535, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32000017

RESUMO

Two novel compounds were isolated for the first time from Calycotome spinosa (L.) Link, an alkaloid 5-Hydroxy-1H-indole (4) and a cyclitol D-pinitol (5), together with the three well-known flavonoids; Chrysin-7-O-(ß-D-glucopyranoside) (1), Chrysin-7-O-ß-D-(6″-acetyl)glycopyranoside (2) and Apigenin-7-O-ß-D-glycopyranoside (3). The chemical structures of the isolated compounds were elucidated by spectroscopic data and mass spectrometric analyses; including a fresh approach 1D-NMR, 2D-NMR with LC-ESI-MS/MS. In this study, the new compound (4) that has been obtained from the leaves MeOH extract presented the best radical scavenging activity (DPPH) (IC50 < 10 µg/mL) compared to the standard butylated hydroxytoluene (BHT, IC50 = 34.73 ± 0.23 µg/mL) and showed the highest total antioxidant capacity (TAC = 985.54 ± 0.13 mg AAE/g extract) in contrast to ascorbic acid (TAC = 905.95 ± 0.07 mg AAE/g extract). Furthermore, the strongest reducing power (EC50 = 344.82 ± 0.02 µg/mL), as well as the remarkable scavenging potential by ABTS assay (IC50 = 7.8 ± 0.43 µg/mL), were exhibited by the same composite (4). Followed by the methanol crude extract and the compound (3) that also showed a potent antioxidant (DPPH; IC50 = 41.04 ± 0.15 and 47.36 ± 0.21 µg/mL, TAC; 671.02 ± 0.21 and 608.67 ± 0.34 mg AAE/g extract, FRAP; EC50 = 763.73 ± 0.32 and 814.61 ± 0.31 µg/mL, ABTS; IC50 = 19.18 ± 0.06 and 63.72 ± 0.64 µg/mL, respectively), but less than the previous samples. On the opposite side, compound (5) had the lowest activity, in which its values were less interesting to determine. Moreover, compound (4) has equally exerted an attractive antibacterial activity against Staphylococcus aureus (ATTC-25923), Pseudomonas aeruginosa (ATTC- 27853) and Salmonella abony (NCTC 6017), as measured by the disc diffusion assay, with inhibition zones of 16 ± 0.5, 9.83 ± 0.29 and 8 ± 0.28 mm, in that order. To the best of our knowledge, 5-Hydroxy-1H-indole was isolated from plants for the second time in our current work. Thus, the obtained results from this investigation propose that the leaves of C. spinosa are a rich natural source for value molecules as potential antioxidants and antimicrobial agents for best human health.


Assuntos
Cromatografia Líquida/métodos , Genista/química , Folhas de Planta/química , Análise Espectral/métodos , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Polifenóis/análise , Staphylococcus aureus/efeitos dos fármacos
7.
Foods ; 6(8)2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28783118

RESUMO

This work aims to study the production of the biomass of S. cerevisiae on an optimized medium using date extract as the only carbon source in order to obtain a good yield of the biomass. The biomass production was carried out according to the central composite experimental design (CCD) as a response surface methodology using Minitab 16 software. Indeed, under optimal biomass production conditions, temperature (32.9 °C), pH (5.35) and the total reducing sugar extracted from dates (70.93 g/L), S. cerevisiae produced 40 g/L of their biomass in an Erlenmeyer after only 16 h of fermentation. The kinetic performance of the S. cerevisiae strain was investigated with three unstructured models i.e., Monod, Verhulst, and Tessier. The conformity of the experimental data fitted showed a good consistency with Monod and Tessier models with R² = 0.945 and 0.979, respectively. An excellent adequacy was noted in the case of the Verhulst model (R² = 0.981). The values of kinetic parameters (Ks, Xm, µm, p and q) calculated by the Excel software, confirmed that Monod and Verhulst were suitable models, in contrast, the Tessier model was inappropriately fitted with the experimental data due to the illogical value of Ks (-9.434). The profiles prediction of the biomass production with the Verhulst model, and that of the substrate consumption using Leudeking Piret model over time, demonstrated a good agreement between the simulation models and the experimental data.

8.
Appl Biochem Biotechnol ; 172(4): 1735-46, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24258791

RESUMO

This report is to our knowledge the first to study plant growth promotion and biocontrol characteristics of Bacillus isolates from extreme environments of Eastern Algeria. Seven isolates of 14 (50 %) were screened for their ability to inhibit growth of some phytopathogenic fungi on PDA and some roots exudates. The bacteria identification based on 16S r-RNA and gyrase-A gene sequence analysis showed that 71 % of the screened isolates belonged to Bacillus amyloliquefaciens and the rest were closely related to B. atrophaeus and B. mojavensis. Most of them had high spore yields (22 × 10(8)-27 × 10(8) spores/ml). They produced protease and cellulase cell wall-degrading enzymes while the chitinase activity was only observed in the B. atrophaeus (6SEL). A wide variety of lipopeptides homologous was detected by liquid chromatography-electrospray ionization-mass spectrometry analysis. Interestingly, some additional peaks with new masses were characterized, which may correspond to new fengycin classes. The isolates produced siderophores and indole-3- acetic acid phytohormone. The greenhouse experiment using a naturally infested soil with Sclerotonia sclerotiorum showed that the B. atrophaeus (6SEL) significantly increased the size of the chickpea plants and reduced the stem rot disease (P < 0.05). These results suggest that these isolates may be used further as bio-inoculants to improve crop systems.


Assuntos
Bacillus/isolamento & purificação , Bacillus/fisiologia , Plantas/microbiologia , Argélia , Bacillus/genética , Cicer/crescimento & desenvolvimento , Cicer/microbiologia , RNA Ribossômico 16S/genética
9.
Indian J Microbiol ; 53(4): 447-52, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24426149

RESUMO

The phenotypic and genotypic diversity of the plant growth promoting Bacillus genus have been widely investigated in the rhizosphere of various agricultural crops. However, to our knowledge this is the first report on the Bacillus species isolated from the rhizosphere of Calendula officinalis. 15 % of the isolated bacteria were screened for their important antifungal activity against Fusarium oxysporum, Botrytis cinerea, Aspergillus niger, Cladosporium cucumerinium and Alternaria alternata. The bacteria identification based on 16S r-RNA and gyrase-A genes analysis, revealed strains closely related to Bacillus amyloliquefaciens, B. velezensis, B. subtilis sub sp spizezenii and Paenibacillus polymyxa species. The electro-spray mass spectrometry coupled to liquid chromatography (ESI-LC MS) analysis showed that most of the Bacillus isolates produced the three lipopeptides families. However, the P. polymyxa (18SRTS) didn't produce any type of lipopeptides. All the tested Bacillus isolates produced cellulase but the protease activity was observed only in the B. amyloliquefaciens species (9SRTS). The Salkowsky colorimetric test showed that the screened bacteria synthesized 6-52 µg/ml of indole 3 acetic acid. These bacteria produced siderophores with more than 10 mm wide orange zones on chromazurol S. The greenhouse experiment using a naturally infested soil with Sclerotonia sclerotiorum showed that the B. amyloliquefaciens (9SRTS) had no significant (P > 0.05) effect on the pre-germination of the chickpea seeds. However, it increased the size of the chickpea plants and reduced the stem rot disease (P < 0.05).These results suggested that the Bacillus strains isolated in this work may be further used as bioinoculants to improve the production of C. officinalis and other crop systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...