Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biochem Mol Biol Educ ; 52(2): 145-155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37929794

RESUMO

In the last decade, video games became a common vehicle for citizen science initiatives in life science, allowing participants to contribute to real scientific data analysis while learning about it. Since 2010, our scientific discovery game (SDG) Phylo enlists participants in comparative genomic data analysis. It is frequently used as a learning tool, but the activities were difficult to aggregate to build a coherent teaching activity. Here, we describe a strategy and series of recipes to facilitate the integration of SDGs in courses and implement this approach in Phylo. We developed new roles and functionalities enabling instructors to create assignments and monitor the progress of students. A story mode progressively introduces comparative genomics concepts, allowing users to learn and contribute to the analysis of real genomic sequences. Preliminary results from a user study suggest this framework may help to boost user motivation and clarify pedagogical objectives.


Assuntos
Ciência do Cidadão , Humanos , Aprendizagem , Genômica/métodos , Estudantes , Motivação
2.
Magn Reson Med ; 90(4): 1271-1281, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37332203

RESUMO

PURPOSE: Frequency drift correction is an important postprocessing step in MRS that yields improvements in spectral quality and metabolite quantification. Although routinely applied in single-voxel MRS, drift correction is much more challenging in MRSI due to the presence of phase-encoding gradients. Thus, separately acquired navigator scans are normally required for drift estimation. In this work, we demonstrate the use of self-navigating rosette MRSI trajectories combined with time-domain spectral registration to enable retrospective frequency drift corrections without the need for separately acquired navigator echoes. METHODS: A rosette MRSI sequence was implemented to acquire data from the brains of 5 healthy volunteers. FIDs from the center of k-space ( k = 0 $$ k=0 $$ FIDs) were isolated from each shot of the rosette acquisition, and time-domain spectral registration was used to estimate the frequency offset of each k = 0 $$ k=0 $$ FID relative to a reference scan (the first k = 0 $$ k=0 $$ FID in the series). The estimated frequency offsets were then used to apply corrections throughout k $$ k $$ -space. Improvements in spectral quality were assessed before and after drift correction. RESULTS: Spectral registration resulted in significant improvements in signal-to-noise ratio (12.9%) and spectral linewidths (18.5%). Metabolite quantification was performed using LCModel, and the average Cramer-Rao lower bounds uncertainty estimates were reduced by 5.0% for all metabolites, following field drift correction. CONCLUSION: This study demonstrated the use of self-navigating rosette MRSI trajectories to retrospectively correct frequency drift errors in in vivo MRSI data. This correction yields meaningful improvements in spectral quality.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Espectroscopia de Ressonância Magnética/métodos , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Razão Sinal-Ruído , Voluntários Saudáveis , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...