Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Toxicol Lett ; 398: 91-104, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768836

RESUMO

Desensitization of nicotinic acetylcholine receptors (nAChRs) can be induced by overstimulation with acetylcholine (ACh) caused by an insufficient degradation of ACh after poisoning with organophosphorus compounds (OPCs). Currently, there is no generally applicable treatment for OPC poisoning that directly targets the desensitized nAChR. The bispyridinium compound MB327, an allosteric modulator of nAChR, has been shown to act as a resensitizer of nAChRs, indicating that drugs binding directly to nAChRs can have beneficial effects after OPC poisoning. However, MB327 also acts as an inhibitor of nAChRs at higher concentrations and can thus not be used for OPC poisoning treatment. Consequently, novel, more potent resensitizers are required. To successfully design novel ligands, the knowledge of the binding site is of utmost importance. Recently, we performed in silico studies to identify a new potential binding site of MB327, MB327-PAM-1, for which a more affine ligand, UNC0646, has been described. In this work, we performed ligand-based screening approaches to identify novel analogs of UNC0646 to help further understand the structure-affinity relationship of this compound class. Furthermore, we used structure-based screenings and identified compounds representing four new chemotypes binding to MB327-PAM-1. One of these compounds, cycloguanil, is the active metabolite of the antimalaria drug proguanil and shows a higher affinity towards MB327-PAM-1 than MB327. Furthermore, cycloguanil can reestablish the muscle force in soman-inhibited rat muscles. These results can act as a starting point to develop more potent resensitizers of nAChR and to close the gap in the treatment after OPC poisoning.

2.
Toxicol Lett ; 397: 151-162, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759939

RESUMO

Poisoning with organophosphorus compounds, which can lead to a cholinergic crisis due to the inhibition of acetylcholinesterase and the subsequent accumulation of acetylcholine (ACh) in the synaptic cleft, is a serious problem for which treatment options are currently insufficient. Our approach to broadening the therapeutic spectrum is to use agents that interact directly with desensitized nicotinic acetylcholine receptors (nAChRs) in order to induce functional recovery after ACh overstimulation. Although MB327, one of the most prominent compounds investigated in this context, has already shown positive properties in terms of muscle force recovery, this compound is not suitable for use as a therapeutic agent due to its insufficient potency. By means of in silico studies based on our recently presented allosteric binding pocket at the nAChR, i.e. the MB327-PAM-1 binding site, three promising MB327 analogs with a 4-aminopyridinium ion partial structure (PTM0056, PTM0062, and PTM0063) were identified. In this study, we present the synthesis and biological evaluation of a series of new analogs of the aforementioned compounds with a 4-aminopyridinium ion partial structure (PTM0064-PTM0072), as well as hydroxy-substituted analogs of MB327 (PTMD90-0012 and PTMD90-0015) designed to substitute entropically unfavorable water clusters identified during molecular dynamics simulations. The compounds were characterized in terms of their binding affinity towards the aforementioned binding site by applying the UNC0642 MS Binding Assays and in terms of their muscle force reactivation in rat diaphragm myography. More potent compounds were identified compared to MB327, as some of them showed a higher affinity towards MB327-PAM-1 and also a higher recovery of neuromuscular transmission at lower compound concentrations. To improve the treatment of organophosphate poisoning, direct targeting of nAChRs with appropriate compounds is a key step, and this study is an important contribution to this research.


Assuntos
Receptores Nicotínicos , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Animais , Masculino , Agentes Neurotóxicos/toxicidade , Ratos Wistar , Ratos , Intoxicação por Organofosfatos/tratamento farmacológico , Diafragma/efeitos dos fármacos , Diafragma/metabolismo , Relação Estrutura-Atividade , Compostos de Piridínio/farmacologia , Compostos de Piridínio/síntese química , Compostos de Piridínio/química , Contração Muscular/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Sítios de Ligação
3.
Viruses ; 16(4)2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675828

RESUMO

The innate immune response to viruses is formed in part by interferon (IFN)-induced restriction factors, including ISG15, p21, and SAMHD1. IFN production can be blocked by the ISG15-specific protease USP18. HIV-1 has evolved to circumvent host immune surveillance. This mechanism might involve USP18. In our recent studies, we demonstrate that HIV-1 infection induces USP18, which dramatically enhances HIV-1 replication by abrogating the antiviral function of p21. USP18 downregulates p21 by accumulating misfolded dominant negative p53, which inactivates wild-type p53 transactivation, leading to the upregulation of key enzymes involved in de novo dNTP biosynthesis pathways and inactivated SAMHD1. Despite the USP18-mediated increase in HIV-1 DNA in infected cells, it is intriguing to note that the cGAS-STING-mediated sensing of the viral DNA is abrogated. Indeed, the expression of USP18 or knockout of ISG15 inhibits the sensing of HIV-1. We demonstrate that STING is ISGylated at residues K224, K236, K289, K347, K338, and K370. The inhibition of STING K289-linked ISGylation suppresses its oligomerization and IFN induction. We propose that human USP18 is a novel factor that potentially contributes in multiple ways to HIV-1 replication.


Assuntos
HIV-1 , Ubiquitina Tiolesterase , Ubiquitinas , Replicação Viral , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Humanos , HIV-1/fisiologia , HIV-1/genética , Ubiquitinas/metabolismo , Ubiquitinas/genética , Citocinas/metabolismo , Citocinas/genética , Imunidade Inata , Infecções por HIV/virologia , Infecções por HIV/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Interações Hospedeiro-Patógeno , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
4.
Toxicol Lett ; 392: 94-106, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216073

RESUMO

Intoxications with organophosphorus compounds (OPCs) based chemical warfare agents and insecticides may result in a detrimental overstimulation of muscarinic and nicotinic acetylcholine receptors evolving into a cholinergic crisis leading to death due to respiratory failure. In the case of the nicotinic acetylcholine receptor (nAChR), overstimulation leads to a desensitization of the receptor, which cannot be pharmacologically treated so far. Still, compounds interacting with the MB327 binding site of the nAChR like the bispyridinium salt MB327 have been found to re-establish the functional activity of the desensitized receptor. Only recently, a series of quinazoline derivatives with UNC0642 as one of the most prominent representatives has been identified to address the MB327 binding site of the nAChR, as well. In this study, UNC0642 has been utilized as a reporter ligand to establish new Binding Assays for this target. These assays follow the concept of MS Binding Assays for which by assessing the amount of bound reporter ligand by mass spectrometry no radiolabeled material is required. According to the results of the performed MS Binding Assays comprising saturation and competition experiments it can be concluded, that UNC0642 used as a reporter ligand addresses the MB327 binding site of the Torpedo-nAChR. This is further supported by the outcome of ex vivo studies carried out with poisoned rat diaphragm muscles as well as by in silico studies predicting the binding mode of UNC0646, an analog of UNC0642 with the highest binding affinity, in the recently proposed binding site of MB327 (MB327-PAM-1). With UNC0642 addressing the MB327 binding site of the Torpedo-nAChR, this and related quinazoline derivatives represent a promising starting point for the development of novel ligands of the nAChR as antidotes for the treatment of intoxications with organophosphorus compounds. Further, the new MS Binding Assays are a potent alternative to established assays and of particular value, as they do not require the use of radiolabeled material and are based on a commercially available compound as reporter ligand, UNC0642, exhibiting one of the highest binding affinities for the MB327 binding site known so far.


Assuntos
Compostos de Piridínio , Receptores Nicotínicos , Ratos , Animais , Receptores Nicotínicos/metabolismo , Ligantes , Relação Estrutura-Atividade , Sítios de Ligação , Quinazolinas , Compostos Organofosforados , Torpedo/metabolismo
5.
Cell Rep ; 42(11): 113277, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37864791

RESUMO

Sensing of human immunodeficiency virus type 1 (HIV-1) DNA is mediated by the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling axis. Signal transduction and regulation of this cascade is achieved by post-translational modifications. Here we show that cGAS-STING-dependent HIV-1 sensing requires interferon-stimulated gene 15 (ISG15). ISG15 deficiency inhibits STING-dependent sensing of HIV-1 and STING agonist-induced antiviral response. Upon external stimuli, STING undergoes ISGylation at residues K224, K236, K289, K347, K338, and K370. Inhibition of STING ISGylation at K289 suppresses STING-mediated type Ⅰ interferon induction by inhibiting its oligomerization. Of note, removal of STING ISGylation alleviates gain-of-function phenotype in STING-associated vasculopathy with onset in infancy (SAVI). Molecular modeling suggests that ISGylation of K289 is an important regulator of oligomerization. Taken together, our data demonstrate that ISGylation at K289 is crucial for STING activation and represents an important regulatory step in DNA sensing of viruses and autoimmune responses.


Assuntos
DNA , Interferon Tipo I , Humanos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais/genética , Imunidade Inata , Ubiquitinas , Citocinas
6.
Toxicol Lett ; 373: 160-171, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36503818

RESUMO

Organophosphorus compounds (OPCs) are highly toxic compounds that can block acetylcholine esterase (AChE) and thereby indirectly lead to an overstimulation of muscarinic and nicotinic acetylcholine receptors (nAChRs). The current treatment with atropine and AChE reactivators (oximes) is insufficient to prevent toxic effects, such as respiratory paralysis, after poisonings with various OPCs. Thus, alternative treatment options are required to increase treatment efficacy. Novel therapeutics, such as the bispyridinium non-oxime MB327, have been found to reestablish neuromuscular transmission by interacting directly with nAChR, probably via allosteric mechanisms. To rationally design new, more potent drugs addressing nAChR, knowledge of the binding mode of MB327 is fundamental. However, the binding pocket of MB327 has remained elusive. Here, we identify a new potential allosteric binding pocket (MB327-PAM-1) of MB327 located at the transition of the extracellular to the transmembrane region using blind docking experiments and molecular dynamics simulations. MB327 forms striking interactions with the receptor at this site. The interacting amino acids are highly conserved among different subunits and different species. Correspondingly, MB327 can interact with several nAChR subtypes from different species. We predict by rigidity analysis that MB327 exerts an allosteric effect on the orthosteric binding pocket and the transmembrane domain after binding to MB327-PAM-1. Furthermore, free ligand diffusion MD simulations reveal that MB327 also has an affinity to the orthosteric binding pocket, which agrees with recently published results that related bispyridinium compounds show inhibitory effects via the orthosteric binding site. The newly identified binding site allowed us to predict structural modifications of MB327, resulting in the more potent resensitizers PTM0062 and PTM0063.


Assuntos
Intoxicação por Organofosfatos , Receptores Nicotínicos , Humanos , Intoxicação por Organofosfatos/tratamento farmacológico , Receptores Nicotínicos/metabolismo , Compostos de Piridínio/farmacologia , Sítios de Ligação , Oximas/uso terapêutico
7.
J Biol Chem ; 298(10): 102430, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037966

RESUMO

Methionine/valine polymorphism at position 129 of the human prion protein, huPrP, is tightly associated with the pathogenic phenotype, disease progress, and age of onset of neurodegenerative diseases such as Creutzfeldt-Jakob disease or Fatal Familial Insomnia. This raises the question of whether and how the amino acid type at position 129 influences the structural properties of huPrP, affecting its folding, stability, and amyloid formation behavior. Here, our detailed biophysical characterization of the 129M and 129V variants of recombinant full-length huPrP(23-230) by amyloid formation kinetics, CD spectroscopy, molecular dynamics simulations, and sedimentation velocity analysis reveals differences in their aggregation propensity and oligomer content, leading to deviating pathways for the conversion into amyloid at acidic pH. We determined that the 129M variant exhibits less secondary structure content before amyloid formation and higher resistance to thermal denaturation compared to the 129V variant, whereas the amyloid conformation of both variants shows similar thermal stability. Additionally, our molecular dynamics simulations and rigidity analyses at the atomistic level identify intramolecular interactions responsible for the enhanced monomer stability of the 129M variant, involving more frequent minimum distances between E196 and R156, forming a salt bridge. Removal of the N-terminal half of the 129M full-length variant diminishes its differences compared to the 129V full-length variant and highlights the relevance of the flexible N terminus in huPrP. Taken together, our findings provide insight into structural properties of huPrP and the effects of the amino acid identity at position 129 on amyloid formation behavior.


Assuntos
Amiloide , Amiloidose , Síndrome de Creutzfeldt-Jakob , Insônia Familiar Fatal , Polimorfismo Genético , Proteínas Priônicas , Humanos , Amiloide/genética , Amiloide/química , Amiloidose/genética , Síndrome de Creutzfeldt-Jakob/genética , Metionina/genética , Proteínas Priônicas/química , Proteínas Priônicas/genética , Dobramento de Proteína , Valina/genética , Insônia Familiar Fatal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...