Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
J Med Entomol ; 59(5): 1721-1731, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35943144

RESUMO

Populations of Blattella germanica (L.) (German cockroach) have been documented worldwide to be resistant to a wide variety of insecticides with multiple modes of action. The phenylpyrazole insecticide fipronil has been used extensively to control German cockroach populations, exclusively in baits, yet the highest reported fipronil resistance is 38-fold in a single population. We evaluated five populations of German cockroaches, collected in 2018-2019 in apartments in North Carolina and assayed in 2019, to determine the status of fipronil resistance in the state. Resistance ratios in field-collected strains ranged from 22.4 to 37.2, indicating little change in fipronil resistance over the past 20 yr. In contrast, resistance to pyrethroids continues to escalate. We also assessed the roles of detoxification enzymes in fipronil resistance with four synergists previously shown to diminish metabolic resistance to various insecticides in German cockroaches-piperonyl butoxide, S,S,S-tributyl phosphorotrithioate, diethyl maleate, and triphenyl phosphate. These enzymes appear to play a variable role in fipronil resistance. We also sequenced a fragment of the Rdl (resistant to dieldrin) gene that encodes a subunit of the GABA receptor. Our findings showed that all field-collected strains are homozygous for a mutation that substitutes serine for an alanine (A302S) in Rdl, and confers low resistance to fipronil. Understanding why cockroaches rapidly evolve high levels of resistance to some insecticides and not others, despite intensive selection pressure, will contribute to more efficacious pest management.


Assuntos
Blattellidae , Inseticidas , Animais , Blattellidae/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mutação , Pirazóis
2.
Sci Rep ; 12(1): 10270, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715692

RESUMO

Obligate blood feeders, such as Cimex lectularius (common bed bug), have symbiotic associations with nutritional endosymbionts that produce B-vitamins. To quantify the symbiont's contribution to host fitness in these obligate mutualisms, the symbiont must be eliminated and its absence rigorously confirmed. We developed and validated procedures for complete elimination of Wolbachia (Wb) in bed bugs and quantified development and reproduction in bed bugs with and without Wb and with and without B-vitamins supplementation. Aposymbiotic bed bugs had slower nymphal development, reduced adult survivorship, smaller adult size, fewer eggs per female, and lower hatch rate than bed bugs that harbored Wb. In aposymbiotic bed bugs that were fed B-vitamins-supplemented blood, nymph development time, adult survivorship and hatch rate recovered to control levels, but adult size and egg number only partially recovered. These results underscore the nutritional dependence of bed bugs on their Wb symbiont and suggest that Wb may provide additional nutritional benefits beyond the B-vitamin mix that we investigated.


Assuntos
Percevejos-de-Cama , Complexo Vitamínico B , Wolbachia , Animais , Suplementos Nutricionais , Feminino , Ninfa , Reprodução , Complexo Vitamínico B/farmacologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-33956595

RESUMO

A Gram-stain-negative, rod-shaped, non-motile, non-spore-forming, aerobic bacterium, designated type strain SSI9T, was isolated from sand fly (Phlebotomus papatasi Scopoli; Diptera: Psychodidae) rearing substrate and subjected to polyphasic taxonomic analysis. Strain SSI9T contained phosphatidylethanolamine as a major polar lipid, MK-7 as the predominant quinone, and C16 : 1ω6c/C16 : 1ω7c, iso-C15 : 0, iso-C17 : 0 3-OH and C16 : 0 as the major cellular fatty acids. Phylogenetic analysis based on 16S rRNA gene sequences revealed that SSI9T represents a member of the genus Sphingobacterium, of the family Sphingobacteriaceae sharing 96.5-88.0 % sequence similarity with other species of the genus Sphingobacterium. The results of multilocus sequence analysis using the concatenated sequences of the housekeeping genes recA, rplC and groL indicated that SSI9T formed a separate branch in the genus Sphingobacterium. The genome of SSI9T is 5 197 142 bp with a DNA G+C content of 41.8 mol% and encodes 4395 predicted coding sequences, 49 tRNAs, and three complete rRNAs and two partial rRNAs. SSI9T could be distinguished from other species of the genus Sphingobacterium with validly published names by several phenotypic, chemotaxonomic and genomic characteristics. On the basis of the results of this polyphasic taxonomic analysis, the bacterial isolate represents a novel species within the genus Sphingobacterium, for which the name Sphingobacterium phlebotomi sp. nov. is proposed. The type strain is SSI9T (=ATCC TSD-210T=LMG 31664T=NRRL B-65603T).


Assuntos
Phlebotomus/microbiologia , Sphingobacterium/classificação , Sphingobacterium/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Fosfatidiletanolaminas/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingobacterium/genética , Sphingobacterium/metabolismo
4.
J Med Entomol ; 58(4): 1798-1807, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-33822102

RESUMO

Cimex lectularius L. populations have been documented worldwide to be resistant to pyrethroids and neonicotinoids, insecticides that have been widely used to control bed bugs. There is an urgent need to discover new active ingredients with different modes of action to control bed bug populations. Fipronil, a phenylpyrazole that targets the GABA receptor, has been shown to be highly effective on bed bugs. However, because fipronil shares the same target site with dieldrin, we investigated the potential of fipronil resistance in bed bugs. Resistance ratios in eight North American populations and one European population ranged from 1.4- to >985-fold, with highly resistant populations on both continents. We evaluated metabolic resistance mechanisms mediated by cytochrome P450s, esterases, carboxylesterases, and glutathione S-transferases using synergists and a combination of synergists. All four detoxification enzyme classes play significant but variable roles in bed bug resistance to fipronil. Suppression of P450s and esterases with synergists eliminated resistance to fipronil in highly resistant bed bugs. Target-site insensitivity was evaluated by sequencing a fragment of the Rdl gene to detect the A302S mutation, known to confer resistance to dieldrin and fipronil in other species. All nine populations were homozygous for the wild-type genotype (susceptible phenotype). Highly resistant populations were also highly resistant to deltamethrin, suggesting that metabolic enzymes that are responsible for pyrethroid detoxification might also metabolize fipronil. It is imperative to understand the origins of fipronil resistance in the development or adoption of new active ingredients and implementation of integrated pest management programs.


Assuntos
Percevejos-de-Cama , Resistência a Inseticidas/genética , Pirazóis/farmacologia , Receptores de GABA-A/genética , Animais , Percevejos-de-Cama/efeitos dos fármacos , Percevejos-de-Cama/genética , Proteínas de Insetos/genética , Inseticidas/farmacologia , Mutação , Piretrinas/farmacologia
5.
J Med Entomol ; 58(2): 518-527, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33277897

RESUMO

Phlebotomine sand flies are worldwide vectors of Leishmania parasites as well as other bacterial and viral pathogens. Due to the variable impact of traditional vector control practices, a more ecologically based approach is needed. The goal of this study was to isolate bacteria from the most attractive substrate to gravid Phlebotomus papatasi Scopoli sand flies and determine the role of bacterial volatiles in the oviposition attractancy of P. papatasi using behavioral assays. We hypothesized that gravid sand flies are attracted to bacterially derived semiochemical cues associated with breeding sites. Bacteria were isolated from a larvae-conditioned rearing medium, previously shown to be highly attractive to sand flies. The isolated bacteria were identified by amplifying and sequencing 16S rDNA gene fragments, and 12 distinct bacterial species were selected for two-choice olfactometer bioassays. The mix of 12 bacterial isolates elicited strong attraction at the lower concentration of 107 cells per ml and significant repellence at a high concentration of 109 cells per ml. Three individual isolates (SSI-2, SSI-9, and SSI-11) were particularly attractive at low doses. In general, we observed dose-related effects, with some bacterial isolates stimulating negative and some positive dose-response curves in sand fly attraction. Our study confirms the important role of saprophytic bacteria, gut bacteria, or both, in guiding the oviposition-site selection behavior of sand flies. Identifying the specific attractive semiochemical cues that they produce could lead to development of an attractive lure for surveillance and control of sand flies.


Assuntos
Bactérias/isolamento & purificação , Oviposição , Phlebotomus , Animais , Comportamento Apetitivo/efeitos dos fármacos , Bactérias/química , Meios de Cultura , Feminino , Microbiota , Compostos Orgânicos Voláteis/farmacologia
6.
Sci Total Environ ; 743: 140704, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32927527

RESUMO

Indoor pests, and the allergens they produce, adversely affect human health. Surprisingly, however, their effects on indoor microbial communities have not been assessed. Bed bug (Cimex lectularius) infestations pose severe challenges in elderly and low-income housing. They void large amounts of liquid feces into the home environment, which might alter the indoor microbial community composition. In this study, using bed bug-infested and uninfested homes, we showed a strong impact of bed bug infestations on the indoor microbial diversity. Floor dust samples were collected from uninfested and bed bug-infested homes and their microbiomes were analyzed before and after heat interventions that eliminated bed bugs. The microbial communities of bed bug-infested homes were radically different from those of uninfested homes, and the bed bug endosymbiont Wolbachia was the major driver of this difference. After bed bugs were eliminated, the microbial community gradually shifted toward the community composition of uninfested homes, strongly implicating bed bugs in shaping the dust-associated environmental microbiome. Further studies are needed to understand the viability of these microbial communities and the potential risks that bed bug-associated microbes and their metabolites pose to human health.


Assuntos
Percevejos-de-Cama , Microbiota , Idoso , Animais , Temperatura Alta , Habitação , Humanos , Pobreza
7.
J Med Entomol ; 57(1): 164-172, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31559432

RESUMO

Ecological succession of necrophilous insects follows a predictable sequence, related to their differential attraction to changing odor profiles associated with carrion and colonizing insects. However, the dependency of insect arrival on the duration of the carrion's residency at a location has not been investigated. To assess the fidelity of necrophilous insects to carrion of specific decomposition ages, independent of its location, we monitored the decomposition of neonate pigs in one field and then simultaneously relocated carcasses of different decomposition ages to an ecologically similar but remote field. We examined the effects of decomposition age and relocation on the assembly of the necrophilous insect community, using a novel vented-chamber trap, which excluded all sensory cues except odors. Community composition differed over a 4-d decomposition period, showing that insects were differentially attracted to pigs of different decomposition ages. There was overall concordance between respective decomposition ages in the two fields, with similar relative abundances of taxa before and after transfer. Although different decomposition ages continued to attract different insects, differentiation of the necrophilous insect communities relative to the age of decomposition was less pronounced after transfer. The results of this study demonstrate that translocating a decomposing body to a new, but geographically and ecologically similar location continues the predicted insect succession, albeit with greater variance, based on olfactory cues alone. Several rare taxa were sampled only prior to relocation, including the first documentation of the invasive hairy maggot blow fly, Chrysomya rufifacies (Macquart) (Diptera: Calliphoridae), in central North Carolina.


Assuntos
Biodiversidade , Dípteros/fisiologia , Entomologia Forense , Animais , Cadáver , North Carolina , Mudanças Depois da Morte
8.
Sci Rep ; 9(1): 10968, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358788

RESUMO

High microbial carbon (MBC) demand, a proxy for energy demand (cost), during soil microbial response to stressors such as drought are a major gap in understanding global biogeochemical cycling of carbon (C) and nitrogen (N). The dynamics of two dominant microbial pools (amino acids; AA and exopolymeric substances; EPS) in soils exposed to drying and C and N amendment to mimic both low and high nutrient soil habitats were examined. It was hypothesized that dynamics of EPS and AA (osmolytes) would be greater when soil drying was preceded by a pulse of bioavailable C and N. Drying reduced AA content, even as overall soil MBC increased (~35%). The increase in absolute amounts and mol% of certain AA (eg: Taurine, glutamine, tyrosine, phenylalanine) in the driest treatment (-10 MPa) were similar in both soils regardless of amendment suggesting a common mechanism underlying the energy intensive acclimation across soils. MBC and EPS, both increased ~1.5X and ~3X due to drying and especially drying associated with amendment. Overall major pools of C and N based microbial metabolites are dynamic to drying (drought), and thus have implications for earth's biogeochemical fluxes of C and N, perhaps costing 4-7% of forest fixed photosynthetic C input during a single drying (drought) period.


Assuntos
Aminoácidos/análise , Bactérias/metabolismo , Polissacarídeos Bacterianos/análise , Microbiologia do Solo , Solo/química , Carbono/análise , Ciclo do Carbono , Mudança Climática , Secas , Nitrogênio/análise , Ciclo do Nitrogênio
9.
J Econ Entomol ; 112(5): 2295-2301, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31121031

RESUMO

Despite limited efficacy data, do-it-yourself (DIY) insecticide products often promise low-cost alternatives to professional pest control. Total release foggers (TRFs, 'bug bombs'), which are prominent DIY products, were recently shown to be ineffective at reducing German cockroach (Blattella germanica L.) infestations, in contrast to highly effective baits. However, the reason(s) for TRF failure remain unknown. Therefore, we investigated insecticide resistance of apartment-collected cockroaches from homes where TRFs failed. In topical (direct) application assays, resistance to cypermethrin (a common active ingredient in TRFs) was 202 ± 33 times that of a laboratory insecticide-susceptible population (based on LD50 ratios), while resistance to fipronil, a common bait active ingredient, was considerably lower at 14 ± 2 times that of the laboratory insecticide-susceptible population. The addition of PBO, a P450 inhibitor that synergizes pyrethroids, enhanced the efficacy of cypermethrin, but only at high doses of cypermethrin. Additionally, >96% of screened cockroaches possessed at least one copy of the L993F mutation in the voltage-gated sodium channel, known to confer resistance to pyrethroids (knockdown resistance, kdr). Because TRF treatments killed insecticide-susceptible sentinel cockroaches but failed to kill apartment-collected cockroaches, these results suggest that pyrethroid resistance is a major factor contributing to the failure of TRFs. Multiple mechanisms of resistance, including metabolic detoxification of the pyrethroids and kdr mutations that confer target-site insensitivity, suggest that TRFs would lack efficacy against German cockroaches in residential settings, where high levels of pyrethroid resistance have been documented globally.


Assuntos
Blattellidae , Baratas , Inseticidas , Piretrinas , Animais , Bioensaio , Resistência a Inseticidas
10.
Appl Environ Microbiol ; 84(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29959246

RESUMO

German cockroaches, Blattella germanica (Blattodea: Ectobiidae), are human commensals that move freely between food and waste, disseminating bacteria, including potential pathogens, through their feces. However, the relationship between the microbial communities of the cockroach gut and feces is poorly understood. We analyzed the V4 region of the 16S rRNA gene and the V9 region of the 18S rRNA gene by next-generation sequencing (NGS) to compare the bacterial and protist diversities in guts versus feces and males versus females, as well as assess variation across cockroach populations. Cockroaches harbored a diverse array of bacteria, and 80 to 90% of the operational taxonomic units (OTUs) were shared between the feces and gut. Lab-reared and field-collected cockroaches had distinct microbiota, and whereas lab-reared cockroaches had relatively conserved communities, considerable variation was observed in the microbial community composition of cockroaches collected in different apartments. Nonetheless, cockroaches from all locations shared some core bacterial taxa. The eukaryotic community in the feces of field-collected cockroaches was found to be more diverse than that in lab-reared cockroaches. These results demonstrate that cockroaches disseminate their gut microbiome in their feces, and they underscore the important contribution of the cockroach fecal microbiome to the microbial diversity of cockroach-infested homes.IMPORTANCE The German cockroach infests diverse human-built structures, including homes and hospitals. It produces potent allergens that trigger asthma and disseminates opportunistic pathogens in its feces. A comprehensive understanding of gut and fecal microbial communities of cockroaches is essential not only to understand their contribution to the biology of the cockroach, but also for exploring their clinical relevance. In this study, we compare the diversity of bacteria and eukaryotes in the cockroach gut and feces and assess the variation in the gut microbiota across cockroach populations.


Assuntos
Bactérias/classificação , Baratas/microbiologia , Baratas/parasitologia , Microbioma Gastrointestinal/fisiologia , Parasitos/classificação , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Fezes/microbiologia , Fezes/parasitologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Parasitos/genética , Parasitos/isolamento & purificação , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética
11.
J Med Entomol ; 55(5): 1284-1291, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-29771344

RESUMO

The American dog tick, Dermacentor variabilis (Say), is a vector of spotted fever group (SFG) rickettsiae, including Rickettsia rickettsii the causative organism of Rocky Mountain spotted fever (RMSF). In North Carolina, SFG rickettsioses (including RMSF) are a leading cause of tick-borne illness. Knowledge of the infection rate and geographic distribution of D. variabilis ticks infected with Rickettsia spp. provides information on the spatial distribution of public health risk. Accordingly, we extracted genomic DNA from adult D. variabilis collected from field habitats in 32 North Carolina counties from 2009 to 2013. A nested PCR assay of the 23S-5S intergenic spacer (IGS) region of Rickettsia coupled with reverse line blot hybridization (RLBH) with species-specific probes was used to detect and identify rickettsiae to species. Approximately half of the 532 tick DNA samples exhibited a band of the expected size on agarose gels, indicating infection with Rickettsia spp. RLBH analyses showed R. amblyommatis (formerly 'Candidatus R. amblyommii'), R. parkeri, and R. montanensis were predominant, while other Rickettsia species detected included R. conorii-like, R. massiliae, R. rhipicephali, R. canadensis, R. bellii, and some unknown Rickettsia spp. Some ticks were infected with more than one Rickettsia species. Notably, several Rickettsia-positive ticks harbored R. rickettsii. DNA sequencing was performed on a portion of the 23S-5S IGS amplicons and the results were concordant with RLB assay results. We conclude that Rickettsia spp. are common in D. variabilis in North Carolina. Geographic patterns in the occurrence of Rickettsia-infected D. variabilis ticks across the counties sampled are discussed.


Assuntos
Dermacentor/microbiologia , Rickettsia/isolamento & purificação , Animais , North Carolina , Filogenia , Reação em Cadeia da Polimerase/métodos , Rickettsia/genética
12.
Front Microbiol ; 7: 1255, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27579024

RESUMO

Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2-V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, ß-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation.

13.
Vector Borne Zoonotic Dis ; 16(5): 302-8, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27008102

RESUMO

Tick-borne diseases cause substantial morbidity throughout the United States, and North Carolina has a high incidence of spotted fever rickettsioses and ehrlichiosis, with sporadic cases of Lyme disease. The occupational risk of tick-borne infections among outdoor workers is high, particularly those working on publicly managed lands. This study identified incident tick-borne infections and examined seroconversion risk factors among a cohort of North Carolina outdoor workers. Workers from the North Carolina State Divisions of Forestry, Parks and Recreation, and Wildlife (n = 159) were followed for 2 years in a randomized controlled trial evaluating the effectiveness of long-lasting permethrin-impregnated clothing. Antibody titers against Rickettsia parkeri, Rickettsia rickettsii, "Rickettsia amblyommii," and Ehrlichia chaffeensis were measured at baseline (n = 130), after 1 year (n = 82), and after 2 years (n = 73). Titers against Borrelia burgdorferi were measured at baseline and after 2 years (n = 90). Baseline seroprevalence, defined as indirect immunofluorescence antibody titers of 1/128 or greater, was R. parkeri (24%), R. rickettsii (19%), "R. amblyommii" (12%), and E. chaffeensis (4%). Incident infection was defined as a fourfold increase in titer over a 1-year period. There were 40 total seroconversions to at least one pathogen, including R. parkeri (n = 19), "R. amblyommii" (n = 14), R. rickettsii (n = 9), and E. chaffeensis (n = 8). There were no subjects whose sera were reactive to B. burgdorferi C6 antigen. Thirty-eight of the 40 incident infections were subclinical. The overall risk of infection by any pathogen during the study period was 0.26, and the risk among the NC Division of Forest Resources workers was 1.73 times that of workers in other divisions (95% confidence interval [CI]: 1.02, 2.92). The risk of infection was lower in subjects wearing permethrin-impregnated clothing, but not significantly (risk ratio = 0.81; 95% CI: 0.47, 1.39). In summary, outdoor workers in North Carolina are at high risk of incident tick-borne infections, most of which appear to be asymptomatic.


Assuntos
Ehrlichiose/transmissão , Doença de Lyme/transmissão , Exposição Ocupacional , Infecções por Rickettsia/transmissão , Doenças Transmitidas por Carrapatos/epidemiologia , Adulto , Borrelia burgdorferi/isolamento & purificação , Ehrlichia chaffeensis/isolamento & purificação , Ehrlichiose/epidemiologia , Feminino , Humanos , Incidência , Doença de Lyme/epidemiologia , Masculino , Pessoa de Meia-Idade , North Carolina/epidemiologia , Rickettsia/classificação , Infecções por Rickettsia/epidemiologia , Picadas de Carrapatos/epidemiologia
14.
J Clin Microbiol ; 54(4): 972-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26818674

RESUMO

A novel nested PCR assay was developed to detectRickettsiaspp. in ticks and tissue samples from humans and laboratory animals. Primers were designed for the nested run to amplify a variable region of the 23S-5S intergenic spacer (IGS) ofRickettsiaspp. The newly designed primers were evaluated using genomic DNA from 11Rickettsiaspecies belonging to the spotted fever, typhus, and ancestral groups and, in parallel, compared to otherRickettsia-specific PCR targets (ompA,gltA, and the 17-kDa protein gene). The new 23S-5S IGS nested PCR assay amplified all 11Rickettsiaspp., but the assays employing other PCR targets did not. The novel nested assay was sensitive enough to detect one copy of a cloned 23S-5S IGS fragment from "CandidatusRickettsia amblyommii." Subsequently, the detection efficiency of the 23S-5S IGS nested assay was compared to those of the other three assays using genomic DNA extracted from 40 adultDermacentor variabilisticks. The nested 23S-5S IGS assay detectedRickettsiaDNA in 45% of the ticks, while the amplification rates of the other three assays ranged between 5 and 20%. The novel PCR assay was validated using clinical samples from humans and laboratory animals that were known to be infected with pathogenic species ofRickettsia The nested 23S-5S IGS PCR assay was coupled with reverse line blot hybridization with species-specific probes for high-throughput detection and simultaneous identification of the species ofRickettsiain the ticks. "CandidatusRickettsia amblyommii,"R. montanensis,R. felis, andR. belliiwere frequently identified species, along with some potentially novelRickettsiastrains that were closely related toR. belliiandR. conorii.


Assuntos
Dermacentor/microbiologia , Reação em Cadeia da Polimerase/métodos , Infecções por Rickettsiaceae/diagnóstico , Infecções por Rickettsiaceae/microbiologia , Rickettsieae/isolamento & purificação , Animais , Animais de Laboratório , Primers do DNA/genética , DNA Intergênico/química , DNA Intergênico/genética , Humanos , Hibridização de Ácido Nucleico , Sondas de Oligonucleotídeos/genética , RNA Ribossômico 23S/genética , RNA Ribossômico 5S , Rickettsieae/classificação , Rickettsieae/genética , Sensibilidade e Especificidade
15.
Parasit Vectors ; 7: 607, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25533148

RESUMO

BACKGROUND: Tick-transmitted rickettsial diseases, such as ehrlichiosis and spotted fever rickettsiosis, are significant sources of morbidity and mortality in the southern United States. Because of their exposure in tick-infested woodlands, outdoor workers experience an increased risk of infection with tick-borne pathogens. As part of a double blind randomized-controlled field trial of the effectiveness of permethrin-treated clothing in preventing tick bites, we identified tick species removed from the skin of outdoor workers in North Carolina and tested the ticks for Rickettsiales pathogens. METHODS: Ticks submitted by study participants from April-September 2011 and 2012 were identified to species and life stage, and preliminarily screened for the genus Rickettsia by nested PCR targeting the 17-kDa protein gene. Rickettsia were further identified to species by PCR amplification of 23S-5S intergenic spacer (IGS) fragments combined with reverse line blot hybridization with species-specific probes and through cloning and nucleotide sequence analysis of 23S-5S amplicons. Ticks were examined for Ehrlichia and Anaplasma by nested PCR directed at the gltA, antigen-expressing gene containing a variable number of tandem repeats, 16S rRNA, and groESL genes. RESULTS: The lone star tick (Amblyomma americanum) accounted for 95.0 and 92.9% of ticks submitted in 2011 (n = 423) and 2012 (n = 451), respectively. Specimens of American dog tick (Dermacentor variabilis), Gulf Coast tick (Amblyomma maculatum) and black-legged tick (Ixodes scapularis) were also identified. In both years of our study, 60.9% of ticks tested positive for 17-kDa. "Candidatus Rickettsia amblyommii", identified in all four tick species, accounted for 90.2% (416/461) of the 23S-5S-positive samples and 52.9% (416/787) of all samples tested. Nucleotide sequence analysis of Rickettsia-specific 23S-5S IGS, ompA and gltA gene fragments indicated that ticks, principally A. americanum, contained novel species of Rickettsia. Other Rickettsiales, including Ehrlichia ewingii, E. chaffeensis, Ehrlichia sp. (Panola Mountain), and Anaplasma phagocytophilum, were infrequently identified, principally in A. americanum. CONCLUSIONS: We conclude that in North Carolina, the most common rickettsial exposure is to R. amblyommii carried by A. americanum. Other Rickettsiales bacteria, including novel species of Rickettsia, were less frequently detected in A. americanum but are relevant to public health nevertheless.


Assuntos
Vetores Aracnídeos/microbiologia , Ixodidae/microbiologia , Infecções por Rickettsia/epidemiologia , Rickettsia/isolamento & purificação , Infestações por Carrapato/epidemiologia , Animais , Sequência de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Método Duplo-Cego , Feminino , Humanos , Masculino , Dados de Sequência Molecular , North Carolina/epidemiologia , Reação em Cadeia da Polimerase , Prevalência , Rickettsia/genética , Infecções por Rickettsia/microbiologia , Análise de Sequência de DNA
16.
Microb Ecol ; 68(2): 212-21, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24623527

RESUMO

Wood decomposition by soil microorganisms is vital to carbon and nutrient cycles of forested ecosystems. Different wood types decompose at different rates; however, it is not known if there are differences in microbial community succession associated with the decay of different wood types. In this study, the microbial community associated with the decay of pine (decay-susceptible wood), western red cedar (decay resistant) and ACQ-treated pine (Ammoniacal Copper Quaternary, preservative-treated pine for decay resistance) in forest soil was characterized using DNA sequencing, phospholipid fatty acid (PLFA) analysis, and microbial activity over a 26-month period. Bray-Curtis ordination using an internal transcribed spacer (ITS) sequence and PLFA data indicated that fungal communities changed during succession and that wood type altered the pattern of succession. Nondecay fungi decreased over the 26 months of succession; however, by 18 months of decay, there was a major shift in the fungal communities. By this time, Trametes elegans dominated cedar and Phlebia radiata dominated pine and ACQ-treated pine. The description of PLFA associated with ACQ-treated pine resembled cedar more than pine; however, both PLFA and ITS descriptions indicated that fungal communities associated with ACQ-treated pine were less dynamic, perhaps a result of the inhibition by the ACQ preservative, compared with pine and cedar. Overall, fungal community composition and succession were associated with wood type. Further research into the differences in community composition will help to discern their functional importance to wood decay.


Assuntos
Bactérias/crescimento & desenvolvimento , Florestas , Fungos/crescimento & desenvolvimento , Microbiologia do Solo , Madeira/microbiologia , Bactérias/genética , DNA Bacteriano/genética , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Fungos/genética , Consórcios Microbianos , Pinus taeda/microbiologia , RNA Ribossômico 16S/genética , Thuja/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA