RESUMO
Global amphibian declines are compounded by deadly disease outbreaks caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd). Much has been learned about the roles of amphibian skin-produced antimicrobial components and microbiomes in controlling Bd, yet almost nothing is known about the roles of skin-resident immune cells in anti-Bd defenses. Mammalian mast cells reside within and serve as key immune sentinels in barrier tissues like skin. Accordingly, we investigated the roles of Xenopus laevis frog mast cells during Bd infections. Our findings indicate that enrichment of X. laevis skin mast cells confers anti-Bd protection and ameliorates the inflammation-associated skin damage caused by Bd infection. This includes a significant reduction in infiltration of Bd-infected skin by neutrophils, promoting mucin content within cutaneous mucus glands, and preventing Bd-mediated changes to skin microbiomes. Mammalian mast cells are known for their production of the pleiotropic interleukin-4 (IL4) cytokine and our findings suggest that the X. laevis IL4 plays a key role in manifesting the effects seen following cutaneous mast cell enrichment. Together, this work underscores the importance of amphibian skin-resident immune cells in anti-Bd defenses and illuminates a novel avenue for investigating amphibian host-chytrid pathogen interactions.
Assuntos
Batrachochytrium , Mastócitos , Pele , Xenopus laevis , Animais , Mastócitos/imunologia , Mastócitos/microbiologia , Mastócitos/metabolismo , Xenopus laevis/microbiologia , Xenopus laevis/imunologia , Pele/microbiologia , Pele/imunologia , Micoses/imunologia , Micoses/veterinária , Micoses/microbiologia , MicrobiotaRESUMO
Esophageal cancer is the eighth most common cancer worldwide and fourth most common in developing countries. Altered glycosylation pattern of cell membrane molecules along with inflammation is a characteristic attribute of oncogenesis. Galectin-4, a tandem repeat galectin, has shown effect on cancer progression/metastasis in digestive system cancers. This role of galectin-4 can be attributed to variations in LGALS4, gene encoding galectin-4. The present case-control study was designed to analyze four intronic SNPs in LGALS4 with susceptibility toward esophageal cancer.Esophageal cancer cases and age- and gender-matched apparently healthy individuals were recruited for the present study. Genotyping of rs8113319, rs4802886, rs4802887, and rs12610990 was carried out using Sanger sequencing and PCR-RFLP. MedCalc software, SNPStats and SHEsis online platform were used for statistical analysis.Genotypic analyses revealed an overall increased heterozygosity of rs12610990, rs4802886, and rs4802887, and AA genotype of rs8113319 in the study participants. Haplotypic analyses also revealed a predominance of AAAT haplotype in the cases. Moreover, combined presence of wild alleles of rs4802886 and rs4802887 could influence protection toward disease, and combined presence of wild alleles of rs12610990 and rs8113319 could influence disease susceptibility. Furthermore, a strong linkage disequilibrium was also observed between the SNPs. Further studies are underway to validate galectin-4 and its genetic variants as blood-based biomarkers in early disease diagnosis, improving treatment outcome.
RESUMO
Macrophage (MÏ)-lineage cells are integral to the immune defences of all vertebrates, including amphibians. Across vertebrates, MÏ differentiation and functionality depend on activation of the colony stimulating factor-1 (CSF1) receptor by CSF1 and interluekin-34 (IL34) cytokines. Our findings to date indicate that amphibian (Xenopus laevis) MÏs differentiated with CSF1 and IL34 are morphologically, transcriptionally and functionally distinct. Notably, mammalian MÏs share common progenitor population(s) with dendritic cells (DCs), which rely on fms-like tyrosine kinase 3 ligand (FLT3L) for differentiation while X. laevis IL34-MÏs exhibit many features attributed to mammalian DCs. Presently, we compared X. laevis CSF1- and IL34-MÏs with FLT3L-derived X. laevis DCs. Our transcriptional and functional analyses indicated that indeed the frog IL34-MÏs and FLT3L-DCs possessed many commonalities over CSF1-MÏs, including transcriptional profiles and functional capacities. Compared to X. laevis CSF1-MÏs, the IL34-MÏs and FLT3L-DCs possess greater surface major histocompatibility complex (MHC) class I, but not MHC class II expression, were better at eliciting mixed leucocyte responses in vitro and generating in vivo re-exposure immune responses against Mycobacterium marinum. Further analyses of non-mammalian myelopoiesis akin to those described here, will grant unique perspectives into the evolutionarily retained and diverged pathways of MÏ and DC functional differentiation. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Assuntos
Anuros , Células Mieloides , Animais , Xenopus laevis , Macrófagos , Leucócitos , MamíferosRESUMO
The global amphibian declines are compounded by infections with members of the Ranavirus genus such as Frog Virus 3 (FV3). Premetamorphic anuran amphibians are believed to be significantly more susceptible to FV3 while this pathogen targets the kidneys of both pre- and postmetamorphic animals. Paradoxically, FV3-challenged Xenopus laevis tadpoles exhibit lower kidney viral loads than adult frogs. Presently, we demonstrate that X. laevis tadpoles are intrinsically more resistant to FV3 kidney infections than cohort-matched metamorphic and postmetamorphic froglets and that this resistance appears to be epigenetically conferred by endogenous retroviruses (ERVs). Using a X. laevis kidney-derived cell line, we show that enhancing ERV gene expression activates cellular double-stranded RNA-sensing pathways, resulting in elevated mRNA levels of antiviral interferon (IFN) cytokines and thus greater anti-FV3 protection. Finally, our results indicate that large esterase-positive myeloid-lineage cells, rather than renal cells, are responsible for the elevated ERV/IFN axis seen in the tadpole kidneys. This conclusion is supported by our observation that CRISPR-Cas9 ablation of colony-stimulating factor-3 results in abolished homing of these myeloid cells to tadpole kidneys, concurrent with significantly abolished tadpole kidney expression of both ERVs and IFNs. We believe that the manuscript marks an important step forward in understanding the mechanisms controlling amphibian antiviral defenses and thus susceptibility and resistance to pathogens like FV3. IMPORTANCE Global amphibian biodiversity is being challenged by pathogens like the Frog Virus 3 (FV3) ranavirus, underlining the need to gain a greater understanding of amphibian antiviral defenses. While it was previously believed that anuran (frog/toad) amphibian tadpoles are more susceptible to FV3, we demonstrated that tadpoles are in fact more resistant to this virus than metamorphic and postmetamorphic froglets. We showed that this resistance is conferred by large myeloid cells within the tadpole kidneys (central FV3 target), which possess an elevated expression of endogenous retroviruses (ERVs). In turn, these ERVs activate cellular double-stranded RNA-sensing pathways, resulting in a greater expression of antiviral interferon cytokines, thereby offering the observed anti-FV3 protection.
Assuntos
Infecções por Vírus de DNA , Retrovirus Endógenos , Ranavirus , Xenopus laevis , Animais , Linhagem Celular , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Resistência à Doença , Retrovirus Endógenos/imunologia , Interferons/imunologia , Rim/virologia , Larva/imunologia , Larva/virologia , RNA de Cadeia Dupla , Ranavirus/patogenicidade , Xenopus laevis/virologiaRESUMO
The global amphibian declines are compounded by ranavirus infections such as Frog Virus 3 (FV3), and amphibian tadpoles more frequently succumb to these pathogens than adult animals. Amphibian gastrointestinal tracts represent a major route of ranavirus entry, and viral pathogenesis often leads to hemorrhaging and necrosis within this tissue. Alas, the differences between tadpole and adult amphibian immune responses to intestinal ranavirus infections remain poorly defined. As interferon (IFN) cytokine responses represent a cornerstone of vertebrate antiviral immunity, it is pertinent that the tadpoles and adults of the anuran Xenopus laevis frog mount disparate IFN responses to FV3 infections. Presently, we compared the tadpole and adult X. laevis responses to intestinal FV3 infections. Our results indicate that FV3-challenged tadpoles mount more robust intestinal type I and III IFN responses than adult frogs. These tadpole antiviral responses appear to be mediated by myeloid cells, which are recruited into tadpole intestines in response to FV3 infections. Conversely, myeloid cells bearing similar cytology already reside within the intestines of healthy (uninfected) adult frogs, possibly accounting for some of the anti-FV3 resistance of these animals. Further insight into the differences between tadpole and adult frog responses to ranaviral infections is critical to understanding the facets of susceptibility and resistance to these pathogens.
Assuntos
Proteínas de Anfíbios/metabolismo , Infecções por Vírus de DNA/virologia , Interferons/metabolismo , Intestinos/virologia , Células Mieloides/virologia , Ranavirus/patogenicidade , Xenopus laevis/virologia , Fatores Etários , Animais , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/metabolismo , Suscetibilidade a Doenças , Feminino , Interações Hospedeiro-Patógeno , Intestinos/embriologia , Intestinos/imunologia , Larva/imunologia , Larva/metabolismo , Larva/virologia , Masculino , Células Mieloides/imunologia , Células Mieloides/metabolismo , Ranavirus/imunologia , Carga Viral , Xenopus laevis/embriologia , Xenopus laevis/imunologia , Xenopus laevis/metabolismoRESUMO
Mannose-binding lectin (MBL) and lectin complement pathway have become targets of increasing clinical interest. Many aspects of MBL have been recently explored, including the structural properties that allow it to distinguish self from non-self/altered-self structures. Experimental evidences have declared the additional 5'- and 3'-variants that in amalgamation with well-known secretor polymorphisms change MBL function and concentration. Moreover, the current review highlights the differential behavior of MBL on exposure with extra/intracellular pathogens and in autoimmune diseases, stressing the fact that "high MBL levels can increase diseases susceptibility," a paradox that needs justification. Attributable to these discrepancies, no absolute level of MBL deficiency could be defined so far and thus must be interpreted for specific diseases through case-control population-specific designs. Overall, it is evident that further research is needed about MBL and the lectin pathway of complement. Particularly, the transformative role of MBL over evolution is of interest and its role with regard to pathogenesis of different diseases and potential therapeutic targets within the respective pathways should be further explored. Apart from this, it is necessary to adopt an extensive locus-wide methodology to apprehend the clinical significance of MBL2 polymorphisms in a variety of infectious diseases by the future studies.
RESUMO
Being sessile organisms, plants are persistently confronted by a diverse array of biotic agents, including viruses, bacteria, fungi, herbivores, and nematodes. Understanding the mechanism of host-pathogen interactions is essential for improving plant resistance against these biotic factors. In this review, we have discussed various means and mechanisms by which pathogens influence the host plant defense. A virulent pathogen can reduce the growth and development of a plant, which eventually lowers its yield by multiple processes, like enhancement in cell death, as well as modification of plant architecture. This review also explains the various strategies used by plants to control pathogen-caused diseases. These mainly include either resistance or tolerance by activating cell signaling pathways, which further regulate the synthesis and accumulation of several cellular products, such as phytohormones, enzymes, proteins, and secondary metabolites. To minimize the influence of infection on their vigor, plants also exhibit immunity regardless of the amount of pathogen multiplication. The current review provides an important insight into the mechanisms of host-pathogen interaction, which is very significant for efficient disease management.
Assuntos
Doenças das Plantas , Plantas/imunologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade VegetalRESUMO
Dendritic cell-associated C-type lectin-1 (Dectin-1), also known as ß-glucan receptor is an emerging pattern recognition receptor (PRR) which belongs to the family of C-type lectin receptor (CLR). This CLR identifies ligands independently of Ca2+ and is majorly involved in coupling of innate with adaptive immunity. Formerly, Dectin-1 was best known for its role in anti-fungal defense only. However, recent explorations suggested its wider role in defense against variety of infectious diseases caused by pathogens including bacteria, parasites and viruses. In fact, Dectin-1 signaling axis has been suggested to be targeted as an effective therapeutic strategy for cancers. Dectin-1 has also been elucidated ascetically in the heart, respiratory, intestinal, neurological and developmental disorders. Being a defensive PRR, Dectin-1 results in optimal immune responses in collaboration with other PRRs, but the overall evaluation reinforces the hypothesis of disease development on dis-regulation of Dectin-1 activity. This underscores the impact of Dectin-1 polymorphisms in modulating protein expression and generation of non-optimal immune responses through defective collaborations, further underlining their therapeutic potential. To add on, Dectin-1 influence autoimmunity and severe inflammation accredited to recognition of self T cells and apoptotic cells through unknown ligands. Few reports have also testified its redundant role in infections, which makes it a complicated molecule to be fully resolved. Thus, Dectin-1 is a hub that runs a complex collaborative network, whose interactive wire connections to different PRRs are still pending to be revealed. Alternatively, so far focus of almost all the researchers was the two major cell surface isoforms of Dectin-1, despite the fact that its soluble functional intracellular isoform (Dectin-1E) has already been dissected but is indefinable. Therefore, this review intensely recommends the need of future research to resolve the un-resolved and treasure the comprehensive role of Dectin-1 in different clinical outcomes, before determining its therapeutic prospective.
Assuntos
Lectinas Tipo C/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Animais , Doenças Autoimunes/imunologia , Autofagia , Cardiopatias/imunologia , Humanos , Infecções/imunologia , Lectinas Tipo C/química , Lectinas Tipo C/genética , Neoplasias/imunologia , Doenças do Sistema Nervoso/imunologia , Receptores de Reconhecimento de Padrão/química , Receptores de Reconhecimento de Padrão/genética , Doenças Respiratórias/imunologiaRESUMO
The recent exploration of various medicinal plants for bioactive potential has led to the growing interest to explore their endophytes for such bioactive potential which may turn out to be better option than the plants. In the present study, Chaetomium globosum, an endophytic fungus isolated from Moringa oleifera Lam has been explored for its various biological activities. The chloroformic extract of C. globosum showed good antimutagenicity against the reactive carcinogenic mutagen, 2-aminofluorene (2-AF) in Ames test. The antiproliferative activity against various cell lines such as HCT-15, HeLa and U87-MG was found to be dose dependent and the viability reduced to 9.26%, 15.7% and 16.3%, respectively. Further, the chloroformic fungal extract was investigated for free radical scavenging activity using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethyl-benzthiazolin-6-sulfonic acid) assay which showed the IC50 value of 45.16 µg/ml and 50.55 µg/ml, respectively. The fungal extract also showed good ferric reducing power. Total phenolic and flavonoid content was found to be in linear relationship with the antioxidant potential of the fungal extract. High performance liquid chromatography showed the presence of phenolics which may help to combat the free radicals. The presence of various bioactive compounds was analysed by GC-MS which endorsed Chaetomium globosum to be a promising candidate for drug development.
Assuntos
Antimutagênicos , Extratos Celulares/farmacologia , Chaetomium , Endófitos , Moringa oleifera/microbiologia , Antioxidantes , Extratos Celulares/análise , Extratos Celulares/isolamento & purificação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Chaetomium/química , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos , Flavonoides/análise , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Fenóis/análise , Fenóis/isolamento & purificação , Fenóis/farmacologiaRESUMO
Steroids are a pivotal class of hormones with a key role in growth modulation and signal transduction in multicellular organisms. Synthetic steroids are widely used to cure large array of viral, fungal, bacterial, and cancerous infections. Brassinosteroids (BRs) are a natural collection of phytosterols, which have structural similarity with animal steroids. BRs are dispersed universally throughout the plant kingdom. These plant steroids are well known to modulate a plethora of physiological responses in plants leading to improvement in quality as well as yield of food crops. Moreover, they have been found to play imperative role in stress-fortification against various stresses in plants. Over a decade, BRs have conquered worldwide interest due to their diverse biological activities in animal systems. Recent studies have indicated anticancerous, antiangiogenic, antiviral, antigenotoxic, antifungal, and antibacterial bioactivities of BRs in the animal test systems. BRs inhibit replication of viruses and induce cytotoxic effects on cancerous cell lines. Keeping in view the biological activities of BRs, this review is an attempt to update the information about prospects of BRs in biomedical and clinical application.
Assuntos
Pesquisa Biomédica , Brassinosteroides/farmacologia , Animais , Brassinosteroides/análise , Brassinosteroides/uso terapêutico , Dieta , HumanosRESUMO
The genetic variants of Mannose-Binding Lectin, a vital component of innate immunity have been studied with acute/recurrent vaginal infections ((R)VVI) and presented inconclusive findings. Therefore, a systematic review and meta-analysis of published data were conducted to assess the possible role of these variations in (R)VVI. A comprehensive search was made using PubMed, Web of Science and Google scholar till June 18, 2019. A total of 12 studies met the specified criteria and were included in the analysis. Different comparisons were made on the basis of the outcome of interest that resulted in the filtering of studies for the pooled analysis to find an association using the standard genetic models. Odds ratio (OR) with 95% confidence interval (CI) was chosen as the effect measure for the data synthesis. The trim and fill technique was applied to adjust the publication bias. The meta-analysis revealed the significant association (p < 0.05) of rs1800450 polymorphism with RVVI risk (OR ≥ 3.5) in all the genetic models. The subgroup analysis identified the same association in Caucasian and Mixed ethnicity. Quantitative synthesis based on RVVC showed>3.5 fold risk of disease development accredited to rs1800450. A combined evaluation of Exon1 variants showed no association with (R)VVI. This meta-analysis suggests rs1800450 polymorphism as a genetic predisposing factor for RVVI, but to reinforce, further studies with a larger sample size are warranted.
Assuntos
Lectina de Ligação a Manose/genética , Polimorfismo de Nucleotídeo Único , Vulvovaginite/genética , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Recidiva , Vulvovaginite/patologiaRESUMO
An endophytic fungus Aspergillus fumigatus isolated from Moringa oleifera has been evaluated for its various bioactivities. The chloroformic fungal extract exhibited a good antimicrobial as well as antibiofilm activity against various pathogenic microorganisms. It also demonstrated a good antimutagenicity against the reactive carcinogenic ester generating mutagen, 2-aminofluorene (2-AF) with IC50 values of 0.52 mg ml-1 and 0.36 mg ml-1 in case of co-incubation and pre-incubation, respectively. The antiprolifertive activity against different cancer cell lines; such as HCT-15, HeLa A549 and U87-MG showed the IC50 values of 0.061, 0.065 and 0.072 mg ml-1, respectively. The antioxidant activity of fungal extract has been assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethyl-benzthiazolin-6-sulfonicacid) (ABTS) methods with IC50 values of 40.07 µg and 54.28 µg, respectively. Total phenolics and flavonoid contents have been also determined. Ultra-high performance liquid chromatography (UPLC) of fungal extract revealed the presence of various phenolic compounds (caffeic acid, rutin, ellagic acid, quercetin and kaempferol). Further an attempt has been made to purify the bioactive compounds by column chromatography and GC-MS analysis. The above studies demonstrated a good bioactive potential of endophytic fungus Aspergillus fumigatus and shows the pharmacological importance of an endophytic fungus and justify the need to carry out further studies.
Assuntos
Aspergillus fumigatus/isolamento & purificação , Aspergillus fumigatus/metabolismo , Moringa oleifera/microbiologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Aspergillus fumigatus/fisiologia , Biofilmes/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/farmacologia , Fungos/efeitos dos fármacos , Moringa oleifera/metabolismo , Fenóis/farmacologia , Extratos Vegetais/farmacologiaRESUMO
Recurrent vulvovaginal infections (RVVI) has not only become an epidemiological and clinical problem but also include large social and psychological consequences. Understanding the mechanisms of both commensalism and pathogenesis are necessary for the development of efficient diagnosis and treatment strategies for these enigmatic vaginal infections. Through this review, an attempt has been made to analyze vaginal microbiota (VMB) from scratch and to provide an update on its current understanding in relation to health and common RVVI i.e. bacterial vaginosis, vulvovaginal candidiaisis and Trichomoniasis, making the present review first of its kind. For this, potentially relevant studies were retrieved from data sources and critical analysis of the literature was made. Though, culture-independent methods have greatly unfolded the mystery regarding vaginal bacterial microbiome, there are only a few studies regarding the composition and diversity of vaginal mycobiome and different Trichomonas vaginalis strains. This scenario suggests a need of further studies based on comparative genomics of RVVI pathogens to improve our perceptive of RVVI pathogenesis that is still not clear (Fig. 5). Besides this, the review details the rationale for Lactobacilli dominance and changes that occur in healthy VMB throughout a women's life. Moreover, the list of possible agents continues to expand and new species recognised in both health and VVI are updated in this review. The review concludes with the controversies challenging the widely accepted dogma i.e. "VMB dominated with Lactobacilli is healthier than a diverse VMB". These controversies, over the past decade, have complicated the definition of vaginal health and vaginal infections with no definite conclusion. Thus, further studies on newly recognised microbial agents may reveal answers to these controversies. Conversely, VMB of women could be an answer but it is not enough to just look at the microbiology. We have to look at the woman itself, as VMB which is fine for one woman may be troublesome for others. These differences in women's response to the same VMB may be determined by a permutation of behavioural, cultural, genetic and various other anonymous factors, exploration of which may lead to proper definition of vaginal health and disease.
Assuntos
Candidíase Vulvovaginal , Microbiota , Vaginite por Trichomonas , Vagina/microbiologia , Vaginose Bacteriana , Biofilmes/crescimento & desenvolvimento , Candida/isolamento & purificação , Candida/metabolismo , Candida albicans/isolamento & purificação , Candida albicans/metabolismo , Candidíase Vulvovaginal/microbiologia , Candidíase Vulvovaginal/patologia , Candidíase Vulvovaginal/transmissão , Coinfecção/microbiologia , Coinfecção/parasitologia , Feminino , Gardnerella vaginalis/isolamento & purificação , Interações entre Hospedeiro e Microrganismos , Humanos , Lactobacillus/isolamento & purificação , Lactobacillus/metabolismo , Interações Microbianas , Microbiota/fisiologia , Recidiva , Vaginite por Trichomonas/parasitologia , Vaginite por Trichomonas/patologia , Vaginite por Trichomonas/transmissão , Trichomonas vaginalis/isolamento & purificação , Trichomonas vaginalis/metabolismo , Vagina/parasitologia , Vaginose Bacteriana/microbiologia , Vaginose Bacteriana/patologia , Vaginose Bacteriana/transmissão , Fatores de Virulência/metabolismoRESUMO
Recurrent vulvovaginal infections (RVVI), a devastating group of mucosal infection, are severely affecting women's quality of life. Our understanding of the vaginal defense mechanisms have broadened recently with studies uncovering the inflammatory nature of bacterial vaginosis, inflammatory responses against novel virulence factors, innate Type 17 cells/IL-17 axis, neutrophils mediated killing of pathogens by a novel mechanism, and oxidative stress during vaginal infections. However, the pathogens have fine mechanisms to subvert or manipulate the host immune responses, hijack them and use them for their own advantage. The odds of hijacking increases, due to impaired immune responses, the net magnitude of which is the result of numerous genetic variations, present in multiple host genes, detailed in this review. Thus, by underlining the role of the host immune responses in disease etiology, modern research has clarified a major hypothesis shift in the pathophilosophy of RVVI. This knowledge can further be used to develop efficient immune-based diagnosis and treatment strategies for this enigmatic disease conditions. As for instance, plasma-derived MBL replacement, adoptive T-cell, and antibody-based therapies have been reported to be safe and efficacious in infectious diseases. Therefore, these emerging immune-therapies could possibly be the future therapeutic options for RVVI.
Assuntos
Suscetibilidade a Doenças/imunologia , Interações Hospedeiro-Patógeno/imunologia , Vulvovaginite/etiologia , Imunidade Adaptativa , Feminino , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/genética , Humanos , Imunidade Inata , Estresse Oxidativo , Polimorfismo de Nucleotídeo Único , Receptores de Reconhecimento de Padrão/metabolismo , Recidiva , Vagina/imunologia , Vagina/metabolismo , Vagina/microbiologia , Vagina/patologia , Vulvovaginite/diagnóstico , Vulvovaginite/epidemiologia , Vulvovaginite/metabolismoRESUMO
BACKGROUND: Human mannose binding lectin (MBL) and dendritic cell-associated C-type lectin-1 (Dectin-1) are the two prototypical PRRs of innate immunity, whose direct role in recurrent vulvovaginal infections (RVVI) defense has been defined. Previously, MBL insufficiency was proposed as a possible risk factor for the rapid progression of RVVI while, Dectin-1 was found to be playing an active role in the defense. However, the complete genetic bases for the observed low MBL levels are still lacking as our previous studies in harmony with others demonstrated the un-expected genotype-phenotype patterns. This suggested the presence of unidentified regulatory variants that may modulate sMBL levels and risk of RVVI. Therefore, the present study was designed for more inclusive locus-wide MBL2 analysis and for the possible non-linear interaction analysis of two PRRs that may impact RVVI susceptibility. METHODS: The present study has extended the previous findings by investigating (1) the role of chosen additional SNPs falling in the 5' near region relating to sMBL levels and RVVI susceptibility, using polymerase chain reaction-restriction fragment length polymorphism, (2) interactions among SNPs within gene by comprehensive locus-wide haplotype analyses of two MBL2 blocks, (3) gene-gene interaction analyses between two PRRs, using multifactor dimensionality reduction. RESULTS: rs11003124_G, rs7084554_C, rs36014597_G, and rs11003123_A were observed as the minor alleles in the representative North Indian cohort. RVVI cases and its types showed an appreciably high frequency of C allele, its homozygosity and heterozygosity, explaining the observed dominant mode of inheritance of rs7084554 polymorphism in contributing 1.81 fold risk of RVVI. The rs36014597 polymorphism showed the overdominant mode of inheritance, which further depicts that the carrier of a heterozygous genotype of this polymorphism had more extreme phenotype than either of its homozygous carriers in developing 4.07 fold risk of RVVI. sMBL levels significantly varied for rs11003124, rs36014597 and rs11003123 polymorphisms in bacterial vaginosis, while for rs7084554 polymorphism in mixed infection. Independent analysis of 5' and 3' haplotype blocks suggested the risk-modifying effect of all the 5' additional variants, Y/X secretor polymorphism and 3'-UTR SNP i.e. rs10824792. Combined 5'/3' haplotype analyses depicted the importance of rs36014597; an additional 5' variant, Y/X and rs10824792 polymorphisms from both the blocks in regulating sMBL levels and RVVI risk. Three gene-gene interaction models involving uni-variant, bi-variant and tri-variant appeared as significant predictors of RVVI risk with cross-validation consistency of 10/10, 9/10 and 5/10, respectively. CONCLUSIONS: The study presented a low-cost reproducible screening design for additional 5' variants i.e. rs11003124, rs7084554, rs36014597 and rs11003123 of MBL2 that can act as markers of susceptibility for RVVI or any other diseases. Two additional 5' variants of MBL2 i.e. rs7084554 and rs36014597 were suggested as novel molecular markers that may contribute to RVVI risk by varying sMBL levels. Variants of two blocks were found to have more of a combined effect than the independent effect in modulating RVVI susceptibility and sMBL levels. The study presented weak synergistic interaction between MBL2 and CLEC7A in association with RVVI risk. The preliminary data will establish the foundation for the investigation of within gene and between genes interaction analyses towards RVVI susceptibility.
RESUMO
Recurrent vulvovaginal infections (RVVI), owing to their adverse health consequences, have become a serious dilemma worldwide. Low serum levels of Mannose-Binding Lectin (sMBL), a main component of innate immunity, was found to be associated with RVVI risk, though complete genetic bases are still elusive. To reveal unrecognised regulatory variants, 3'-UTR region of MBL2 with six putative functional SNPs i.e. rs10824792, rs2120132, rs2120131, rs2165813, rs2099903 and rs2099902 was sequenced and genotyped in the present study for 109 RVVI cases and age matched healthy controls. sMBL levels were measured by enzyme-linked immunosorbent assay. The homozygous CC genotype of rs10824792 polymorphism was found to be conferring risk (OR = 2.94) of developing RVVI. Significantly high frequency of corresponding CC genotype was found in Vulvovaginal Candidiasis (VVC) and Mixed Infections (MI) relative to controls. Significantly insufficient sMBL levels were observed in RVVI and its types (Bacterial Vaginosis, VVC and MI) than controls. sMBL levels varied for rs10824792 SNP as expected from the genetic analyses. Six marker haplotype analyses have shown CTTGCT, the haplotype containing only risk allele of rs10824792, conferred risk of RVVI and its types by lowering sMBL levels. In conclusion, a 3'-UTR SNP i.e. rs10824792 was identified as novel associated genetic marker for contributing low sMBL levels and RVVI risk. Our findings contribute to the novel future research directions for the development of emerging MBL substitution as effectual therapy for RVVI.
Assuntos
Regiões 3' não Traduzidas/genética , Candida/fisiologia , Candidíase Vulvovaginal/genética , Genótipo , Lectina de Ligação a Manose/genética , Vaginite por Trichomonas/genética , Trichomonas vaginalis/fisiologia , Vaginose Bacteriana/genética , Adulto , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Índia , Polimorfismo de Nucleotídeo Único , Risco , Adulto JovemRESUMO
Diarrheal disease caused by Vibrio cholerae is endemic in developing countries including India and is associated with high rate of mortality especially in children. V. cholerae is known to form biofilms on the gut epithelium, and the biofilms once formed are resistant to the action of antibiotics. Therefore agents that prevent the biofilm formation and disperse the preformed biofilms are associated with therapeutic benefits. The use of antibiotics for the treatment of cholera is associated with side effects such as gut dysbiosis due to depletion of gut microflora, and the increasing problem of antibiotic resistance. Thus search for safe alternative therapeutic agents is warranted. Herein, we screened the lactobacilli spp. isolated from the fecal samples of healthy children for their abilities to prevent biofilm formation and to disperse the preformed biofilms of V. cholerae and V. parahaemolyticus by using an in vitro assay. The results showed that the culture supernatant (CS) of all the seven isolates of Lactobacillus spp. used in the study inhibited the biofilm formation of V. cholerae by more than 90%. Neutralization of pH of CS completely abrogated their antimicrobial activities against V. cholera, but had negligible effects on their biofilm inhibitory potential. Further, CS of all the lactobacilli isolates caused the dispersion of preformed V. cholerae biofilms in the range 62-85%; however, pH neutralization of CS reduced the biofilm dispersal potential of the 4 out of 7 isolates by 19-57%. Furthermore, the studies showed that CS of none of the lactobacilii isolates had antimicrobial activity against V. parahaemolyticus, but 5 out of 7 isolates inhibited the formation of its biofilm in the range 62-82%. However, none of the CS dispersed the preformed biofilms of V. parahaemolyticus. The ability of CS to inhibit the adherence of Vibrio spp. to the epithelial cell line was also determined. Thus, we conclude that the biofilm dispersive action of CS of lactobacilli is strain-specific and pH-dependent. As Vibrio is known to form biofilms in the intestinal niche having physiological pH in the range 6-7, the probiotic strains that have dispersive action at high pH may have better therapeutic potential.
Assuntos
Biofilmes/crescimento & desenvolvimento , Cólera/prevenção & controle , Cólera/terapia , Lactobacillus/metabolismo , Probióticos/uso terapêutico , Vibrio cholerae/crescimento & desenvolvimento , Vibrio parahaemolyticus/crescimento & desenvolvimento , Adolescente , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Linhagem Celular , Criança , Pré-Escolar , Cólera/microbiologia , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Humanos , Lactobacillus/classificação , Lactobacillus/isolamento & purificaçãoRESUMO
Recurrent Vulvovaginal infections (RVVI) are the commonly reported microbiological syndrome affecting millions of women globally. Various molecules of innate immune system are instrumental in clearance of these microbial pathogens, thus suggested as one of the most important contributing factor in determining the disease outcome. Dendritic cell-associated C-type lectin-1 (Dectin-1) is an important molecule of innate immunity that is primarily known for its role in antifungal defenses. However, role of dectin-1 in recognition of other pathogens is also documented. The intracellular expression of dectin-1 was shown to be up-regulated by Mannose Binding Lectin (MBL)-mediated opsonophagocytosis of pathogens. Dectin-1 is encoded by CLEC7A, postulated to be a candidate gene in modulating risk of developing RVVI. In this study, we identified CLEC7A causal variants using in silico analysis. To assess their impact on susceptibility to RVVI, these causal variants along with serum dectin-1 levels (sDectin-1) were investigated using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and Enzyme Linked Immnosorbent Assay (ELISA) respectively, under a case-control design. Furthermore, effect of these polymorphisms was also assessed on sMBL levels. In silico analysis revealed 9 putative functional conserved SNPs of CLEC7A. Association analysis revealed a significantly lower risk of developing RVVI and its types in carriers of CLEC7A rs3901533 G allele and its homozygous genotypes (p < 0.05). The heterozygous genotype was associated with significant protection against RVVI (p = 0.004). Haplotypes GGG and GTA showed significant protection against RVVI (p < 0.0001; p = 0.0003), Bacterial Vaginosis (p = 0.03; p = 0.002), Vulvovaginal Candidiasis (p = 0.03; p = 0.01) and Mixed Infections (p = 0.007; p = 0.04). Mean sDectin-1 levels were significantly high in RVVI and its types compared to controls (p < 0.05). Further, genotype-phenotype stratification showed significant differences within/between cases groups and controls. The CLEC7A rs3901533 polymorphism was also found to be associated with sMBL levels. The present study contributed novel insights into the role of dectin-1 in RVVI. CLEC7A rs3901533 polymorphism and high sDectin-1 levels along with low sMBL levels were found to be associated with RVVI susceptibility. Thus, screening of women with RVVI for these novel associations may lead to better diagnosis and treatment. Also genotyping method used in this study constitutes a simple and reliable assay, which can be confidently, used as a cheaper alternative for genotyping these variants in clinical settings. Finally, new restorative markers for other infectious diseases might be found by exploring nine functionally identified CLEC7A SNPs.
Assuntos
Biomarcadores , Predisposição Genética para Doença , Genótipo , Lectinas Tipo C/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Vulvovaginite/genética , Adulto , Alelos , Candidíase Vulvovaginal/genética , Coinfecção/genética , Coinfecção/microbiologia , Simulação por Computador , Células Dendríticas/imunologia , Feminino , Variação Genética , Haplótipos , Humanos , Imunidade Inata , Lectinas Tipo C/sangue , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Desequilíbrio de Ligação , Lectina de Ligação a Manose/metabolismo , Vaginose Bacteriana/genética , Vulvovaginite/microbiologiaRESUMO
Recurrent Vulvovaginal Infections (RVVI) is common problem associated with women of reproductive age. The function and deleterious effect of Mannose Binding Lectin 2 (MBL2) common polymorphisms are reported to be associated with various diseases. However, the role of MBL2 promoter gene polymorphisms and their combined effect with structural variant along with Serum Mannose Binding Lectin (sMBL) levels in RVVI has not been investigated. The study included 258 RVVI cases and 203 age matched healthy controls. These were investigated for the distribution of MBL2 codon 54 and promoter polymorphisms by Amplification Refractory Mutation System-Polymerase Chain Reaction (ARMS-PCR). sMBL levels were quantified by Enzyme Linked Immnosorbent Assay (ELISA). The frequency of X allele and its genotypes was significantly high in cases than controls conferring risk toward RVVI and its types (p < 0.05). The HXPA (OR; 2.0), LXQB (OR; 1.43) haplotypes were associated with susceptibility to RVVI cases while haplotype LYQB significantly protected against RVVI (OR; 0.58), Bacterial Vaginosis (BV) (OR; 0.27) and Mixed Infections (MI) cases (OR; 0.62) with high frequency observed in controls (p < 0.05). Mean sMBL levels were significantly low in RVVI, BV, Vulvovaginal Candidiasis (VVC), and MI cases compared to controls (p < 0.05). VVC patient showed significantly low sMBL levels than RVVI and MI cases (p < 0.05). The mean sMBL levels segregated based on MBL2 genotypes and haplotypes showed significant difference in different cases groups with controls. The findings of the present study suggested that MBL2 Y/X polymorphism and low sMBL levels were associated with susceptibility to RVVI either it is BV, VVC, or MI. Thus MBL deficiency in women with RVVI may contribute to decreased efficiency in clearing of pathogens. Hence, specific measures like administration of purified or recombinant MBL might decrease the incidence of vaginal infections recurrences and more-effective treatment.
RESUMO
Mannose binding lectin (MBL) is a liver derived protein which plays an important role in innate immunity. Mannose binding lectin gene 2 (MBL2) polymorphisms are reported to be associated with various diseases. In spite of being exhaustively studied molecule, no attempt has been made till date to comprehensively and systematically analyze the SNPs of MBL2 gene. The present study was carried out to identify and prioritize the SNPs of MBL2 gene for further genotyping and functional studies. To predict the possible impact of SNPs on MBL structure and function SNP data obtained from dbSNP database were analyzed using various bioinformatics tools. Out of total 661 SNPs, only 37 validated SNPs having minor allele frequency ≥0.10 were considered for the present study. These 37 SNPs includes one in 3' near gene, nine in 3' UTR, one non-synonymous SNP (nsSNP), thirteen intronic SNPs and thirteen in 5' near gene. From these 37 SNPs, 11 non-coding SNPs were identified to be of functional significance and evolutionary conserved. Out of these, 4 SNPs from 3' UTR were found to play role in miRNA binding, 7 SNPs from 5' near and intronic region were predicted to involve in transcription factor binding and expression of MBL2 gene. One nsSNP Gly54Asp (rs1800450) was found to be deleterious and damaging by both SIFT and Polyphen-2 servers and thus affecting MBL2 protein stability and expression. Protein structural analysis with this amino acid variant was performed by using I-TASSER, RAMPAGE, Swiss-PdbViewer, Chimera and I-mutant. Information regarding solvent accessibility, molecular dynamics and energy minimization calculations showed that this variant causes clashes with neighboring amino acids residues that must interfere in the normal triple helix formation of trimeric subunit and further with the normal assembly of MBL oligomeric form, hence decrease in stability. Thus, findings of the present study indicated 12 SNPs of MBL2 gene to be functionally important. Exploration of these variants may provide novel remedial markers for various diseases.