Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(6): 2479-2488, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37224421

RESUMO

A large repertoire of nanocarrier (NC) technologies exists, each with highly specified advantages in terms of targetability, stability, and immunological inertness. The characterization of such NC properties within physiological conditions is essential for the development of optimized drug delivery systems. One method that is well established for reducing premature elimination by avoiding protein adsorption on NCs is surface functionalization with poly(ethylene glycol) (PEG), aptly called PEGylation. However, recent studies revealed that some PEGylated NCs have a delayed immune response, indicating the occurrence of protein-NC interactions. Obvious protein-NC interactions, especially in micellar systems, may have been overlooked as many early studies relied on techniques less sensitive to molecular level interactions. More sensitive techniques have been developed, but a major challenge is the direct measurement of interactions, which must be done in situ, as micelle assemblies are dynamic. Here, we report the use of pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS) to interrogate the interactions between two PEG-based micelle models and serum albumin protein to compare protein adsorption differences based on linear or cyclic PEG architectures. First, by measuring micelle diffusion in isolated and mixed solutions, we confirmed the thermal stability of diblock and triblock copolymer micelle assemblies. Further, we measured the co-diffusion of micelles and serum proteins, the magnitudes of which increased with concentration and continued incubation. The results demonstrate that PIE-FCCS is capable of measuring direct interactions between fluorescently labeled NC and serum proteins, even at concentrations 500 times lower than those observed physiologically. This capability showcases the potential utility of PIE-FCCS in the characterization of drug delivery systems in biomimetic conditions.


Assuntos
Micelas , Polímeros , Polímeros/química , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Proteínas/química
2.
Nat Methods ; 18(4): 397-405, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33686301

RESUMO

Class C G protein-coupled receptors (GPCRs) are known to form stable homodimers or heterodimers critical for function, but the oligomeric status of class A and B receptors, which constitute >90% of all GPCRs, remains hotly debated. Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful approach with the potential to reveal valuable insights into GPCR organization but has rarely been used in living cells to study protein systems. Here, we report generally applicable methods for using smFRET to detect and track transmembrane proteins diffusing within the plasma membrane of mammalian cells. We leverage this in-cell smFRET approach to show agonist-induced structural dynamics within individual metabotropic glutamate receptor dimers. We apply these methods to representative class A, B and C receptors, finding evidence for receptor monomers, density-dependent dimers and constitutive dimers, respectively.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Receptores Acoplados a Proteínas G/metabolismo , Dimerização , Conformação Proteica , Receptores Acoplados a Proteínas G/química
3.
Methods ; 140-141: 40-51, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448037

RESUMO

Fluorescence cross-correlation spectroscopy (FCCS) is an advanced fluorescence technique that can quantify protein-protein interactions in vivo. Due to the dynamic, heterogeneous nature of the membrane, special considerations must be made to interpret FCCS data accurately. In this study, we describe a method to quantify the oligomerization of membrane proteins tagged with two commonly used fluorescent probes, mCherry (mCH) and enhanced green (eGFP) fluorescent proteins. A mathematical model is described that relates the relative cross-correlation value (fc) to the degree of oligomerization. This treatment accounts for mismatch in the confocal volumes, combinatoric effects of using two fluorescent probes, and the presence of non-fluorescent probes. Using this model, we calculate a ladder of fc values which can be used to determine the oligomer state of membrane proteins from live-cell experimental data. Additionally, a probabilistic mathematical simulation is described to resolve the affinity of different dimeric and oligomeric protein controls.


Assuntos
Proteínas de Membrana/metabolismo , Modelos Químicos , Multimerização Proteica , Espectrometria de Fluorescência/métodos , Animais , Células COS , Chlorocebus aethiops , Fluorescência , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Modelos Estatísticos , Ligação Proteica , Espectrometria de Fluorescência/instrumentação
4.
Biochemistry ; 56(1): 61-72, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28045251

RESUMO

G protein-coupled receptors (GPCRs) detect a wide variety of physical and chemical signals and transmit that information across the cellular plasma membrane. Dimerization is a proposed modulator of GPCR signaling, but the structure and stability of class A GPCR dimerization have been difficult to establish. Here we investigated the dimerization affinity and binding interface of human cone opsins, which initiate and sustain daytime color vision. Using a time-resolved fluorescence approach, we found that human red cone opsin exhibits a strong propensity for dimerization, whereas the green and blue cone opsins do not. Through mutagenesis experiments, we identified a dimerization interface in the fifth transmembrane helix of human red cone opsin involving amino acids I230, A233, and M236. Insights into this dimerization interface of red cone opsin should aid ongoing investigations of the structure and function of GPCR quaternary interactions in cell signaling. Finally, we demonstrated that the same residues needed for dimerization are also partially responsible for the spectral tuning of red cone opsin. This last observation has the potential to open up new lines of inquiry regarding the functional role of dimerization for red cone opsin.


Assuntos
Opsinas dos Cones/química , Multimerização Proteica , Receptores Acoplados a Proteínas G/química , Transdução de Sinais , Sequência de Aminoácidos , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Opsinas dos Cones/genética , Opsinas dos Cones/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Immunoblotting , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Mutação , Receptores Acoplados a Proteínas G/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Proteína Vermelha Fluorescente
5.
Elife ; 52016 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-27017828

RESUMO

The epidermal growth factor receptor (EGFR) is activated by dimerization, but activation also generates higher-order multimers, whose nature and function are poorly understood. We have characterized ligand-induced dimerization and multimerization of EGFR using single-molecule analysis, and show that multimerization can be blocked by mutations in a specific region of Domain IV of the extracellular module. These mutations reduce autophosphorylation of the C-terminal tail of EGFR and attenuate phosphorylation of phosphatidyl inositol 3-kinase, which is recruited by EGFR. The catalytic activity of EGFR is switched on through allosteric activation of one kinase domain by another, and we show that if this is restricted to dimers, then sites in the tail that are proximal to the kinase domain are phosphorylated in only one subunit. We propose a structural model for EGFR multimerization through self-association of ligand-bound dimers, in which the majority of kinase domains are activated cooperatively, thereby boosting tail phosphorylation.


Assuntos
Receptores ErbB/metabolismo , Multimerização Proteica , Regulação Alostérica , Animais , Análise Mutacional de DNA , Receptores ErbB/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oócitos , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Imagem Individual de Molécula , Xenopus
6.
Biophys J ; 109(9): 1937-45, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26536270

RESUMO

Plexins are single-pass transmembrane receptors that bind the axon guidance molecules semaphorins. Single-pass transmembrane proteins are an important class of receptors that display a wide variety of activation mechanisms, often involving ligand-dependent dimerization or conformational changes. Resolving the activation mechanism and dimerization state of these receptors is extremely challenging, especially in a live-cell environment. Here, we report on the dimerization state of PlexinA4 and its response to activation by semaphorin binding. Semaphorins are dimeric molecules that activate plexin by binding two copies of plexin simultaneously and inducing formation of a specific active dimer of plexin. An open question is whether there are preexisting plexin dimers that could act as autoinhibitory complexes. We address these questions with pulsed interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). PIE-FCCS is a two-color fluorescence microscopy method that is directly sensitive to protein dimerization in a live-cell environment. With PIE-FCCS, we show that inactive PlexinA4 is dimerized in the live-cell plasma membrane. By comparing the cross correlation of full-length PlexinA4 to control proteins and plexin mutants, we show that dimerization of inactive PlexinA4 requires the Sema domain, but not the cytoplasmic domain. Ligand stimulation with Sema6A does not change the degree of cross correlation, indicating that plexin activation does not lead to higher-order oligomerization. Together, the results suggest that semaphorin activates plexin by disrupting an inhibitory plexin dimer and inducing the active dimer.


Assuntos
Membrana Celular/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia de Fluorescência , Mutação , Proteínas do Tecido Nervoso/genética , Imagem Óptica , Multimerização Proteica , Receptores de Superfície Celular/genética , Semaforinas/genética , Espectrometria de Fluorescência , Transfecção
7.
Langmuir ; 31(5): 1784-91, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25599116

RESUMO

Binding of biomacromolecules to anionic lipids in the plasma membrane is a common motif in many cell signaling pathways. Previous work has shown that macromolecules with cationic sequences can form nanodomains with sequestered anionic lipids, which alters the lateral distribution and mobility of the membrane lipids. Such sequestration is believed to result from the formation of a lipid-macromolecule complex. To date, however, the molecular structure and dynamics of the lipid-polymer interface are poorly understood. We have investigated the behavior of polycationic quaternized polyvinylpyridine (QPVP) on supported lipid bilayers doped with phosphatidylserine (PS) or phosphatidylinositol phosphate (PIP) lipids using time-resolved fluorescence microscopy, including pulsed interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). PIE-FCCS is a dual-color fluorescence spectroscopy that translates fluctuations in fluorescence signal into a measurement of diffusion and colocalization. By labeling the polymer and lipids, we investigated the adsorption-induced translational mobility of lipids and systematically studied the influence of lipid charge density and solution ionic strength. Our results show that alteration of anionic lipid lateral mobility is dependent on the net charge of the lipid headgroup and is modulated by the ionic strength of the solution, indicating that electrostatic interactions drive the decrease in lateral mobility of anionic lipids by adsorbed QPVP. At physiological salt concentration we observe that the lipid lateral mobility is weakly influenced by QPVP and that there is no evidence of stable lipid-polymer complexes.


Assuntos
Bicamadas Lipídicas/química , Movimento , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Polivinil/química , Adsorção , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...