RESUMO
Protein microarrays have been successfully used for detection of allergen-specific IgE in patient sera. Here, we demonstrate proof-of-concept of a solid-phase technique coupling the high-throughput potential of protein microarrays with the biologically relevant readout provided by IgE reporter cells, creating a novel allergic sensitization detection system. Three proteins (κ-casein, timothy grass pollen extract, polyclonal anti-human IgE) were printed onto three different polymer-coated surfaces (aldehyde-, epoxy- and NHS ester-coated). ToF-SIMs analysis was performed to assess printed protein stability and retention during washing steps. NFAT-DsRed rat basophil leukemia cell attachment and retention during washing steps was assessed after treatment with various extracellular matrix proteins. NFAT-DsRed IgE reporter cells were sensitized with serum of an allergic donor, incubated on the printed slides, and cell activation determined using a microarray laser scanner. NFAT DsRed IgE reporter cell binding was significantly increased on all polymer surfaces after incubation with fibronectin and vitronectin, but not collagen or laminin. All surfaces supported printed protein stability during washing procedure, with epoxy- and NHS ester-coated surfaces showing best protein retention. Cell activation was significantly higher in NHS ester-coated slides after timothy grass pollen extract stimulation appearing a suitable substrate for further development of an automated allergy diagnosis system.
Assuntos
Hipersensibilidade/diagnóstico , Análise Serial de Proteínas/métodos , Testes Cutâneos , Adesão Celular , Humanos , Estudo de Prova de Conceito , Espectrometria de Massa de Íon SecundárioRESUMO
The presence of allergen-specific IgE (sIgE) in human sera can be determined by measuring the binding of sIgE to solid phase-bound preparations containing the allergens to be tested. These can be complex extracts, purified or recombinant allergens, or peptides. Older methods, such as the IgE CAP test, only allow sIgE measurements to multiple allergens in individual measurements. Newer technologies such as the ImmunoCAP® ISAC test allows semiquantitative testing of sIgE to over a hundred allergens on a protein array. Allergen arrays have higher numerical power, allowing testing to many allergens at the same time, using only a small amount of serum. We have previously demonstrated how allergen arrays can be used in combination with purified peripheral blood basophils, introducing a clinically relevant readout. Here, we describe a protocol and materials that allow the testing of sIgE with multiple allergens in array format, using a humanized fluorescent IgE reporter system (RBL NFAT-DsRed).
Assuntos
Basófilos/imunologia , Genes Reporter , Hipersensibilidade/diagnóstico , Imunoglobulina G/imunologia , Análise Serial de Proteínas/métodos , Alérgenos/imunologia , Animais , Linhagem Celular , Células Cultivadas , Humanos , Hipersensibilidade/sangue , Hipersensibilidade/imunologia , Testes Imunológicos/métodos , Testes Imunológicos/normas , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Análise Serial de Proteínas/normas , Ratos , Proteína Vermelha FluorescenteRESUMO
Several laboratories have created rat basophil leukemia (RBL) cell lines stably transfected with the human high affinity IgE receptor (FcεRIH). More recently, humanized RBL cell lines saw the introduction of reporter genes such as luciferase (RS-ATL8) and DsRed (RBL NFAT-DsRed). These reporters are more sensitive than their parental non-reporter humanized RBL cell lines. However, no studies so far have addressed the levels of FcεRIH surface expression on humanized RBL cell lines. This is a critical parameter, as it determines the ability of these cells to be efficiently sensitized with human IgE, hence it should affect the sensitivity of the cell assay-a critical parameter for any diagnostic application. Our purpose was to assess and compare the levels of expression of the transfected FcεRIH chain in humanized RBL cell lines. We compared surface levels of FcεRIαH by flow cytometry, using a fluorescently labelled monoclonal antibody (CRA-1/AER-37) and determined receptor numbers using calibration microspheres. FcεRIαH copy numbers were assessed by qPCR, and the sequence verified. Transfection with FcεRIγH cDNA was assessed for its ability to increase FcεRIαH expression in the NFAT-DsRed reporter. While both SX-38 and RS-ATL8 expressed about 500.000 receptors/cell, RBL 703-21 and NFAT-DsRed had approximately 10- to 30-fold lower FcεRIαH expression, respectively. This was neither related to FcεRIH gene copy numbers, nor to differences in steady state mRNA levels, as determined by qPCR and RT-qPCR, respectively. Instead, FcεRIαH surface expression appeared to correlate with the co-expression of FcεRIγH. Stable transfection of NFAT-DsRed cells with pBJ1 neo-huFcεRI gamma, which constitutively expresses FcεRIγH, increased FcεRIαH chain expression levels. Levels of FcεRIαH surface expression vary greatly between humanized RBL reporter cell lines. This difference will affect the sensitivity of the reporter system when used for diagnostic purposes.
Assuntos
Dosagem de Genes , Genes de Cadeia Pesada de Imunoglobulina/genética , Cadeias gama de Imunoglobulina/genética , Leucemia Basofílica Aguda/genética , Receptores de IgE/genética , Animais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Genes Reporter/genética , Cadeias gama de Imunoglobulina/metabolismo , Leucemia Basofílica Aguda/patologia , Ratos , Receptores de IgE/metabolismo , TransfecçãoRESUMO
Great efforts have been made to identify promising antigens and vaccine formulations against schistosomiasis. Among the previously described Schistosoma vaccine candidates, cyclophilins comprise an interesting antigen that could be used for vaccine formulations. Cyclophilin A is the target for the cyclosporine A, a drug with schistosomicide activity, and its orthologue from Schistosoma japonicum induces a protective immune response in mice. Although Schistosoma mansoni cyclophilin A also represents a promising target for anti-schistosome vaccines, its potential to induce protection has not been evaluated. In this study, we characterized the cyclophilin A (SmCyp), initially described as Smp17.7, analyzed its allergenic potential using in vitro functional assays, and evaluated its ability to induce protection in mice when administered as an antigen using different vaccine formulations and strategies. Results indicated that SmCyp could be successfully expressed by mammalian cells and bacteria. The recombinant protein did not promote IgE-reporter system activation in vitro, demonstrating its probable safety for use in vaccine formulations. T and B-cell epitopes were predicted in the SmCyp sequence, with two of them located within the active isomerase site. The most immunogenic antigen, SmCyp (107-121), was then used for immunization protocols. Immunization with the SmCyp gene or protein failed to reduce parasite burden but induced an immune response that modulated the granuloma area. In contrast, immunization with the synthetic peptide SmCyp (107-121) significantly reduced worm burden (48-50%) in comparison to control group, but did not regulate liver pathology. Moreover, the protection observed in mice immunized with the synthetic peptide was associated with the significant production of antibodies against the SmCyp (107-121) epitope. Therefore, in this study, we identified an epitope within the SmCyp sequence that induces a protective immune response against the parasite, thus representing a promising antigen that could be used for vaccine formulation against schistosomiasis.
Assuntos
Ciclofilina A/imunologia , Epitopos/imunologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Anti-Helmínticos/imunologia , Antígenos de Helmintos/imunologia , Feminino , Proteínas de Helminto/imunologia , Imunização/métodos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/imunologia , Vacinação/métodos , Vacinas/imunologiaRESUMO
A risk assessment was performed of parsley- and dill-based plant food supplements (PFS) containing apiol and related alkenylbenzenes. First, the levels of the alkenylbenzenes in the PFS and the resulting estimated daily intake (EDI) resulting from use of the PFS were quantified. Since most PFS appeared to contain more than one alkenylbenzene, a combined risk assessment was performed based on equal potency or using a so-called toxic equivalency (TEQ) approach based on toxic equivalency factors (TEFs) for the different alkenylbenzenes. The EDIs resulting from daily PFS consumption amount to 0.74-125 µg kg-1 bw for the individual alkenylbenzenes, 0.74-160 µg kg-1 bw for the sum of the alkenylbenzenes, and 0.47-64 µg kg-1 bw for the sum of alkenylbenzenes when expressed in safrole equivalents. The margins of exposure (MOEs) obtained were generally below 10,000, indicating a priority for risk management if the PFS were to be consumed on a daily basis. Considering short-term use of the PFS, MOEs would increase above 10,000, indicating low priority for risk management. It is concluded that alkenylbenzene intake through consumption of parsley- and dill-based PFS is only of concern when these PFS are used for long periods of time.