Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(12): 2504-2514.e3, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37290443

RESUMO

White campion (Silene latifolia, Caryophyllaceae) was the first vascular plant where sex chromosomes were discovered. This species is a classic model for studies on plant sex chromosomes due to presence of large, clearly distinguishable X and Y chromosomes that originated de novo about 11 million years ago (mya), but lack of genomic resources for this relatively large genome (∼2.8 Gb) remains a significant hurdle. Here we report S. latifolia female genome assembly integrated with sex-specific genetic maps of this species, focusing on sex chromosomes and their evolution. The analysis reveals a highly heterogeneous recombination landscape with strong reduction in recombination rate in the central parts of all chromosomes. Recombination on the X chromosome in female meiosis primarily occurs at the very ends, and over 85% of the X chromosome length is located in a massive (∼330 Mb) gene-poor, rarely recombining pericentromeric region (Xpr). The results indicate that the non-recombining region on the Y chromosome (NRY) initially evolved in a relatively small (∼15 Mb), actively recombining region at the end of the q-arm, possibly as a result of inversion on the nascent X chromosome. The NRY expanded about 6 mya via linkage between the Xpr and the sex-determining region, which may have been caused by expanding pericentromeric recombination suppression on the X chromosome. These findings shed light on the origin of sex chromosomes in S. latifolia and yield genomic resources to assist ongoing and future investigations into sex chromosome evolution.


Assuntos
Silene , Silene/genética , Evolução Molecular , Cromossomos Sexuais/genética , Cromossomo Y , Cromossomo X
2.
PLoS One ; 17(6): e0270610, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35749543

RESUMO

Magnesium (Mg) is an essential macronutrient for plant growth and development. Physiological and transcriptome analyses were conducted to elucidate the adaptive mechanisms to long-term Mg deficiency (MD) in banana seedlings at the 6-leaf stage. Banana seedlings were irrigated with a Mg-free nutrient solution for 42 days, and a mock control was treated with an optimum Mg supply. Leaf edge chlorosis was observed on the 9th leaf, which gradually turned yellow from the edge to the interior region. Accordingly, the total chlorophyll content was reduced by 47.1%, 47.4%, and 53.8% in the interior, center and edge regions, respectively, and the net photosynthetic rate was significantly decreased in the 9th leaf. Transcriptome analysis revealed that MD induced 9,314, 7,425 and 5,716 differentially expressed genes (DEGs) in the interior, center and edge regions, respectively. Of these, the chlorophyll metabolism pathway was preferentially enriched according to Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The expression levels of the five candidate genes in leaves were consistent with what is expected during chlorophyll metabolism. Our results suggest that changes in the expression of genes related to chlorophyll synthesis and decomposition result in the yellowing of banana seedling leaves, and these results are helpful for understanding the banana response mechanism to long-term MD.


Assuntos
Deficiência de Magnésio , Musa , Clorofila/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Musa/genética , Musa/metabolismo , Folhas de Planta/metabolismo , Plântula/genética , Plântula/metabolismo , Transcriptoma
3.
Planta ; 254(6): 115, 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34743252

RESUMO

MAIN CONCLUSION: The banana development was inhibited under the long-term magnesium deficiency (MD) stress, resulting in the leaf chlorosis. MYB108 and WRKY75 are involved in regulating the growth and development of banana leaves and roots under long-term MD. Magnesium deficiency (MD) causes plant growth inhibition, ageing acceleration, yield reduction and quality decline of banana (Musa paradisiaca AA), but the molecular regulatory mechanisms underlying the changes in response to long-term MD conditions remain unknown. In this study, a long-term MD experiment was performed with banana seedlings at the four-leaf stage. Compared to those in the control group, the growth of leaves and roots of seedlings in the long-term MD treatment experimental groups was inhibited, and the Mg content and chlorophyll contents were decreased. Leaves and roots of seedlings from the control and experimental groups were subsequently collected for RNA sequencing to identify the genes that respond to long-term MD. More than 50 million reads were identified from each sample, resulting in the detection of 3500 and 948 differentially expressed genes (DEGs) in the leaves and roots, respectively. MYB and WRKY transcription factors (TFs) involved in plant stress responses were selected for further analysis, and 102 MYB and 149 WRKY TFs were differentially expressed. Furthermore, two highly differentially expressed candidate genes, MYB108 and WRKY75, were functionally analyzed using Arabidopsis mutants grown under long-term MD conditions. The results showed that the density of root hairs on the wild type (WT) was than that on the myb108 and wrky75 mutants under MD, implying that the mutants were more sensitive to MD than the WT. This research broadens our understanding the underlying molecular mechanism of banana seedlings adapted to the long-term MD condition.


Assuntos
Deficiência de Magnésio , Musa , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Musa/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
4.
Sci Rep ; 9(1): 10991, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358893

RESUMO

Guar gum is an important raw material in the food, textile and oil industries, but the biosynthesis of guar gum remains unclear. To illuminate the genes involved in guar gum biosynthesis, guar beans from 30 and 40 days after flowering (DAF) were used for RNA sequencing in this study. A total of 2,535 and 2,724 preferentially expressed genes were found in 30 and 40 DAF endosperm, and 3,720 and 2,530 preferentially expressed genes were found in 30 and 40 DAF embryos, respectively. Of these, mannan synthase genes, α-galactosyltransferase genes and cellulose synthase genes were preferentially expressed in the endosperm from 30 and 40 DAF. The high expression level of these glycometabolism genes in endosperm is consistent with the expectation that the main component of guar gum is galactomannan. We believe that genes related to guar gum biosynthesis found in this study will be useful for both new variety development via genetic engineering and synthetic biology research on guar gum biosynthesis in the future.


Assuntos
Cyamopsis/genética , Galactanos/genética , Mananas/genética , Gomas Vegetais/genética , Vias Biossintéticas , Cyamopsis/metabolismo , Endosperma/genética , Endosperma/metabolismo , Galactanos/metabolismo , Genes de Plantas , Mananas/metabolismo , Gomas Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...