RESUMO
The global diabetes surge poses a critical public health challenge, emphasizing the need for effective glycemic control. However, rapid correction of chronic hyperglycemia can unexpectedly trigger microvascular complications, necessitating a reevaluation of the speed and intensity of glycemic correction. Theories suggest swift blood sugar reductions may cause inflammation, oxidative stress, and neurovascular changes, resulting in complications. Healthcare providers should cautiously approach aggressive glycemic control, especially in long-standing, poorly controlled diabetes. Preventing and managing these complications requires a personalized, comprehensive approach with education, monitoring, and interdisciplinary care. Diabetes management must balance short and long-term goals, prioritizing overall well-being. This editorial underscores the need for a personalized, nuanced approach, focusing on equilibrium between glycemic control and avoiding overcorrection.
RESUMO
Sodium-glucose cotransporter-2 (SGLT2) inhibitors have emerged as a pivotal intervention in diabetes management, offering significant cardiovascular benefits. Empagliflozin, in particular, has demonstrated cardioprotective effects beyond its glucose-lowering action, reducing heart failure hospitalizations and improving cardiac function. Of note, the cardioprotective mechanisms appear to be inde-pendent of glucose lowering, possibly mediated through several mechanisms involving shifts in cardiac metabolism and anti-fibrotic, anti-inflammatory, and anti-oxidative pathways. This editorial summarizes the multifaceted cardiovascular advantages of SGLT2 inhibitors, highlighting the need for further research to elucidate their full therapeutic potential in cardiac care.
RESUMO
BACKGROUND: Maturity-onset diabetes of the young 3 (MODY3), caused by mutations in the HNF1A gene, is the most common subtype of MODY. The diagnosis of MODY3 is critical because a low dose of sulfonylurea agents can achieve glucose control. CASE SUMMARY: We describe a patient with MODY3 involving a novel splicing mutation, in whom low-dose gliclazide was sufficient to control clinically significant hyperglycemia. Sanger sequencing identified a splicing HNF1A mutation in 12q24 NM_000545.5 Intron5 c.1108-1G>A. Glycemic control has been maintained without insulin therapy for 28 mo after the diagnosis of diabetes. CONCLUSION: This case report highlights a novel HNF1A gene mutation in MODY3 that is responsive to sulfonylurea therapy.
RESUMO
The presence of excess glucose in blood is regarded as a sweet hurt for patients with diabetes. Human serum albumin (HSA) is the most abundant protein in human plasma, which undergoes severe non-enzymatic glycation with glucose in patients with diabetes; this modifies the structure and function of HSA. Furthermore, the advanced glycation end products produced by glycated HSA can cause pathological damage to the human body through various signaling pathways, eventually leading to complications of diabetes. Many potential glycation sites on HSA have different degrees of sensitivity to glucose concentration. This review provides a comprehensive assessment of the in vivo glycation sites of HSA; it also discusses the effects of glycation on the structure and function of HSA. Moreover, it addresses the relationship between HSA glycation and diabetes complications. Finally, it focuses on the value of non-enzymatic glycation of HSA in diabetes-related clinical applications.
RESUMO
BACKGROUND: Diabetic kidney disease is a microvascular complication of diabetes with complex pathogenesis. Wingless signaling-mediated renal fibrosis is associated with diabetic kidney disease. Dickkopf-1, a negative regulator of Wingless, has been proven to participate in renal fibrosis, glucose metabolism, and inflammation. However, whether serum Dickkopf-1 levels are associated with diabetic kidney disease remains unclear. AIM: To assess the relationship between serum Dickkopf-1 levels and albuminuria in individuals with type 2 diabetes. METHODS: Seventy-three type 2 diabetes patients and 24 healthy individuals were enrolled in this case-control study. Diabetic individuals were separated into normal albuminuria, microalbuminuria, and macroalbuminuria groups based on their urinary albumin/creatinine ratios (UACRs). Clinical characteristics and metabolic indices were recorded. Serum Dickkopf-1 levels were determined by enzyme-linked immunosorbent assay. RESULTS: No significant difference in serum Dickkopf-1 levels was found between healthy individuals and the normal albuminuria group. However, the levels in the microalbuminuria group were significantly lower than those in the normal albuminuria group (P = 0.017), and those in the macroalbuminuria group were the lowest. Bivariate analysis revealed that serum Dickkopf-1 levels were positively correlated with hemoglobin A1c level (r = 0.368, P < 0.01) and estimated glomerular filtration rate (r = 0.339, P < 0.01), but negatively correlated with diabetes duration (r = -0.231, P = 0.050), systolic blood pressure (r = -0.369, P = 0.001), serum creatinine level (r = -0.325, P < 0.01), and UACR (r = -0.459, P < 0.01). Multiple and logistic regression showed that serum Dickkopf-1 levels were independently associated with UACR (odds ratio = 0.627, P = 0.021). CONCLUSION: Serum Dickkopf-1 levels are negatively associated with UACR. Lower serum Dickkopf-1 levels could be a critical risk factor for albuminuria in diabetes.
RESUMO
BACKGROUND: Diabetic peripheral neuropathy (DPN) is a chronic and serious microvascular complication of diabetes linked to redox imbalance. Sestrin2, a novel inducible stress protein, participates in glucose metabolic regulation and redox homeostasis. However, the association between serum Sestrin2 and DPN is unknown. AIM: To explore the association between serum Sestrin2 and DPN in patients with type 2 diabetes mellitus (T2DM). METHODS: A total of 96 T2DM patients and 39 healthy volunteers, matched by age and sex, participated in this cross-sectional study. Clinical features and metabolic indices were identified. Serum Sestrin2 was measured by ELISA. The association between Sestrin2 and DPN was studied. Correlation and logistic regression analyses were used to evaluate the associations of different metabolic indices with Sestrin2 and DPN. RESULTS: The 96 patients with T2DM were divided into DPN (n = 47) and patients without DPN (n = 49). Serum Sestrin2 was significantly lower in healthy volunteers than in all T2DM patients combined [9.10 (5.41-13.53) ng/mL vs 12.75 (7.44-23.80) ng/mL, P < 0.01]. T2DM patients without DPN also had significantly higher levels of Sestrin2 than healthy volunteers [14.58 (7.93-26.62) ng/mL vs 9.10 (5.41-13.53) ng/mL, P < 0.01]. However, T2DM patients with DPN had lower circulating Sestrin2 levels compared to T2DM patients without DPN [9.86 (6.72-21.71) ng/mL vs 14.58 (7.93-26.62) ng/mL, respectively, P < 0.01]. Bivariate correlation analysis revealed that serum Sestrin2 was positively correlated with body mass index (r = 0.672, P = 0.000), hemoglobin A1c (HbA1c) (r = 0.292, P = 0.000), serum creatinine (r = 0.206, P = 0.016), triglycerides (r = 0.731, P = 0.000), and fasting glucose (r = 0.202, P = 0.040), and negatively associated with estimated glomerular filtration rate (r = -0.230, P = 0.007). After adjustment for sex, age, HbA1c, and diabetes duration, multiple regression analysis revealed that Sestrin2 was independently correlated with body mass index and triglyceride levels (P = 0.000). Logistic regression analyses indicated that Sestrin2, diabetes duration, and high-density lipoprotein were strongly associated with DPN (odds ratio = 0.855, 1.411, and 0.041, respectively). CONCLUSION: Our results show Sestrin2 is decreased in T2DM patients with DNP. As lower Sestrin2 is independently associated with DPN, Sestrin2 may contribute to progression of DPN in T2DM patients.