Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 200: 105834, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582576

RESUMO

Acetylcholinesterase (AChE) inhibitors cause insect death by preventing the hydrolysis of the neurotransmitter acetylcholine, which overstimulates the nervous system. In this study, isorhapontin, isolated from E. globulus leaves, was evaluated as a natural insecticide with AChE inhibition at 12.5 µM. Using kinetic analyses, we found that isorhapontin acted as a competitive inhibitor that binds to the active site of AChE. The inhibition constant (Ki) was 6.1 µM. Furthermore, isorhapontin and resveratrol, which have basic skeletons, were predicted to bind to the active site of AChE via molecular docking. A comparison of the hydrogen bonding between the two stilbenes revealed characteristic differences in their interactions with amino acids. In isorhapontin, Trp83, Gly149, Tyr162, Tyr324, and Tyr370 interacted with the sugar moiety. These results suggest that with further development, isorhapontin can be used as an insecticide alternative.


Assuntos
Eucalyptus , Inseticidas , Estilbenos , Acetilcolinesterase/metabolismo , Inseticidas/farmacologia , Simulação de Acoplamento Molecular , Eucalyptus/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...