Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Affect Disord ; 356: 105-114, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580036

RESUMO

BACKGROUND: Seeking objective quantitative indicators is important for accurately recognizing major depressive disorder (MDD). Lempel-Ziv complexity (LZC), employed to characterize neurological disorders, faces limitations in tracking dynamic changes in EEG signals due to defects in the coarse-graining process, hindering its precision for MDD objective quantitative indicators. METHODS: This work proposed Adaptive Permutation Lempel-Ziv Complexity (APLZC) and Adaptive Weighted Permutation Lempel-Ziv Complexity (AWPLZC) algorithms by refining the coarse-graining process and introducing weight factors to effectively improve the precision of LZC in characterizing EEGs and further distinguish MDD patients better. APLZC incorporated the ordinal pattern, while False Nearest Neighbor and Mutual Information algorithms were introduced to determine and adjust key parameters adaptively. Furthermore, we proposed AWPLZC by assigning different weights to each pattern based on APLZC. Thirty MDD patients and 30 healthy controls (HCs) were recruited and their 64-channel resting EEG signals were collected. The complexities of gamma oscillations were then separately computed using LZC, APLZC, and AWPLZC algorithms. Subsequently, a multi-channel adaptive K-nearest neighbor model was constructed for identifying MDD patients and HCs. RESULTS: LZC, APLZC, and AWPLZC algorithms achieved accuracy rates of 78.29 %, 90.32 %, and 95.13 %, respectively. Sensitivities reached 67.96 %, 85.04 %, and 98.86 %, while specificities were 88.62 %, 95.35 %, and 89.92 %, respectively. Notably, AWPLZC achieved the best performance in accuracy and sensitivity, with a specificity limitation. LIMITATION: The sample size is relatively small. CONCLUSION: APLZC and AWPLZC algorithms, particularly AWPLZC, demonstrate superior effectiveness in differentiating MDD patients from HCs compared with LZC. These findings hold significant clinical implications for MDD diagnosis.


Assuntos
Algoritmos , Transtorno Depressivo Maior , Eletroencefalografia , Humanos , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/diagnóstico , Adulto , Feminino , Masculino , Processamento de Sinais Assistido por Computador , Pessoa de Meia-Idade , Estudos de Casos e Controles , Sensibilidade e Especificidade
2.
Clin Neurophysiol ; 146: 65-76, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36535093

RESUMO

OBJECTIVE: Neural oscillations during sensory and cognitive events interact at different frequencies. However, such evidence in major depressive disorder (MDD) remains scarce. We explored the possible abnormal neural oscillations in MDD by analyzing theta-phase/gamma-amplitude coupling (TGC). METHODS: Resting-state and auditory steady-state response (ASSR) electroencephalography recordings were obtained from 35 first-episode MDD and 35 healthy controls (HCs). TGC during rest, ASSR stimulation, and ASSR baseline between and within groups were analyzed to evaluate MDD alterations. Receiver operating characteristic (ROC), TGC comparison between MDD severity subgroups (mild, moderate, major), and correlations were investigated to determine the potential use of altered TGC for identifying MDD. RESULTS: In MDD, left fronto-central TGC decreased during stimulation, while right fronto-central TGC increased during baseline. The area under ROC curve for altered TGC was 0.863. Furthermore, during stimulation, moderate and major MDD groups exhibited significantly lower TGC than mild group, and fronto-central TGC was negatively correlated with depression scale scores. CONCLUSIONS: Our results provided the first evidence for an abnormal TGC response of fronto-central regions in MDD during an ASSR task. Importantly, altered TGC may be promising biomarkers of MDD. SIGNIFICANCE: Our findings enhance the understanding of physiological mechanisms underlying MDD and aid in its clinical diagnosis.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico , Eletroencefalografia , Ritmo Gama/fisiologia , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...