Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
ACS Nano ; 17(6): 5412-5420, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36877993

RESUMO

In recent years, nanopore-based sequencers have become robust tools with unique advantages for genomics applications. However, progress toward applying nanopores as highly sensitive, quantitative diagnostic tools has been impeded by several challenges. One major limitation is the insufficient sensitivity of nanopores in detecting disease biomarkers, which are typically present at pM or lower concentrations in biological fluids, while a second limitation is the general absence of unique nanopore signals for different analytes. To bridge this gap, we have developed a strategy for nanopore-based biomarker detection that utilizes immunocapture, isothermal rolling circle amplification, and sequence-specific fragmentation of the product to release multiple DNA reporter molecules for nanopore detection. These DNA fragment reporters produce sets of nanopore signals that form distinctive fingerprints, or clusters. This fingerprint signature therefore allows the identification and quantification of biomarker analytes. As a proof of concept, we quantify human epididymis protein 4 (HE4) at low pM levels in a few hours. Future improvement of this method by integration with a nanopore array and microfluidics-based chemistry can further reduce the limit of detection, allow multiplexed biomarker detection, and further reduce the footprint and cost of existing laboratory and point-of-care devices.


Assuntos
Técnicas Biossensoriais , Nanoporos , Humanos , Fragmentação do DNA , DNA/química , Biomarcadores , Genômica , Técnicas Biossensoriais/métodos
3.
Nat Biotechnol ; 41(8): 1130-1139, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36624148

RESUMO

The electrical current blockade of a peptide or protein threading through a nanopore can be used as a fingerprint of the molecule in biosensor applications. However, threading of full-length proteins has only been achieved using enzymatic unfolding and translocation. Here we describe an enzyme-free approach for unidirectional, slow transport of full-length proteins through nanopores. We show that the combination of a chemically resistant biological nanopore, α-hemolysin (narrowest part is ~1.4 nm in diameter), and a high concentration guanidinium chloride buffer enables unidirectional, single-file protein transport propelled by an electroosmotic effect. We show that the mean protein translocation velocity depends linearly on the applied voltage and translocation times depend linearly on length, resembling the translocation dynamics of ssDNA. Using a supervised machine-learning classifier, we demonstrate that single-translocation events contain sufficient information to distinguish their threading orientation and identity with accuracies larger than 90%. Capture rates of protein are increased substantially when either a genetically encoded charged peptide tail or a DNA tag is added to a protein.


Assuntos
Nanoporos , Peptídeos , DNA de Cadeia Simples , Transporte Proteico , Proteínas Hemolisinas/química
4.
Adv Mater ; 35(12): e2207089, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36580439

RESUMO

2D materials are ideal for nanopores with optimal detection sensitivity and resolution. Among these, molybdenum disulfide (MoS2 ) has gained traction as a less hydrophobic material than graphene. However, experiments using 2D nanopores remain challenging due to the lack of scalable methods for high-quality freestanding membranes. Herein, a site-directed, scaled-up synthesis of MoS2 membranes on predrilled nanoapertures on 4-inch wafer substrates with 75% yields is reported. Chemical vapor deposition (CVD), which introduces sulfur and molybdenum dioxide vapors across the sub-100 nm nanoapertures results in exclusive formation of freestanding membranes that seal the apertures. Nucleation and growth near the nanoaperture edges is followed by nanoaperture decoration with MoS2 , which proceeds until a critical flake curvature is achieved, after which fully spanning freestanding membranes form. Intentional blocking of reagent flow through the apertures inhibits MoS2 nucleation around the nanoapertures, promoting the formation of large-crystal monolayer MoS2 membranes. The in situ grown membranes along with facile membrane wetting and nanopore formation using dielectric breakdown enables the recording of dsDNA translocation events at an unprecedentedly high 1 MHz bandwidth. The methods presented here are important steps toward the development of scalable single-layer membrane manufacture for 2D nanofluidics and nanopore applications.

5.
Biophys J ; 120(9): 1537-1541, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33617833

RESUMO

The use of chaotropic reagents is common in biophysical characterization of biomolecules. When the study involves transmembrane protein channels, the stability of the protein channel and supporting bilayer membrane must be considered. In this letter, we show that planar bilayers composed of poly(1,2-butadiene)-b-poly(ethylene oxide) diblock copolymer are stable and leak-free at high guanidinium chloride concentrations, in contrast to diphytanoyl phosphatidylcholine bilayers, which exhibit deleterious leakage under similar conditions. Furthermore, insertion and functional analysis of channels such as α-hemolysin and MspA are straightforward in these polymer membranes. Finally, we demonstrate that α-hemolysin channels maintain their structural integrity at 2 M guanidinium chloride concentrations using blunt DNA hairpins as molecular reporters.


Assuntos
Bicamadas Lipídicas , Polímeros , Guanidina , Proteínas Hemolisinas
6.
Nano Lett ; 19(12): 9145-9153, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31724865

RESUMO

Biological nanopores have been used as powerful platforms for label-free detection and identification of a range of biomolecules for biosensing applications and single molecule biophysics studies. Nonetheless, high limit of detection (LOD) of analytes due to inefficient biomolecular capture into biological nanopores at low voltage poses practical limits on their biosensing efficacy. Several approaches have been proposed to improve the voltage stability of the membrane, including polymerization and hydrogel coating, however, these compromise the lipid fluidity. Here, we developed a chip-based platform that can be massively produced on a wafer scale that is capable of sustaining high voltages of 350 mV with comparable membrane areas to traditional systems. Using this platform, we demonstrate sensing of DNA hairpins in α-hemolysin nanopores at the nanomolar regime under high voltage. Further, we have developed a workflow for one-pot enzymatic release of DNA hairpins with different stem lengths from magnetic microbeads, followed by multiplexed nanopore-based quantification of the hairpins within minutes, paving the way for novel nanopore-based multiplexed biosensing applications.


Assuntos
Técnicas Biossensoriais , DNA/análise , Bicamadas Lipídicas/química , Nanoporos , Conformação de Ácido Nucleico , Proteínas de Escherichia coli/química , Proteínas Hemolisinas/química , Hidrogéis/química
7.
Biomaterials ; 182: 227-233, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30138785

RESUMO

Detection, differentiation, mapping, and sequencing of proteins are important in proteomics for the assessment of cell development such as protein methylation or phosphorylation as well as the diagnosis of diseases including metabolic disorder, mental illness, immunological ailments, and malignant cancers. Nanopore technology has demonstrated the potential for the sequencing or sensing of DNA, RNA, chemicals, or other macromolecules. Due to the diversity of protein in shape, structure and charge and the composition versatility of 20 amino acids, the sequencing of proteins remains challenging. Herein, we report the application of the channel of bacteriophage T7 DNA packaging motor for the differentiation of an assortment of peptides of a single amino acid difference. Explicit fingerprints or signatures were obtained based on current blockage and dwell time of individual peptide. Data from the clear mapping of small proteins after protease digestion suggests the potential of using T7 motor channel for proteomics including protein sequencing.


Assuntos
Bacteriófago T7/química , Bicamadas Lipídicas/química , Mapeamento de Peptídeos/métodos , Peptídeos/análise , Proteínas Virais/química , Sequência de Aminoácidos , Empacotamento do DNA , DNA Viral/química , Lipossomos/química , Modelos Moleculares , Nanoporos/ultraestrutura , Proteômica/métodos , Análise de Sequência de Proteína/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...