Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.124
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1395197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962665

RESUMO

Objective: This study aimed to investigate the biomechanical characteristics of the tandem spinal external fixation (TSEF) for treating multilevel noncontiguous spinal fracture (MNSF) using finite element analysis and provide a theoretical basis for clinical application. Methods: We constructed two models of L2 and L4 vertebral fractures that were fixed with the TSEF and the long-segment spinal inner fixation (LSIF). The range of motion (ROM), maximum stresses at L2 and L4 vertebrae, the screws and rods, and the intervertebral discs of the two models were recorded under load control. Subsequently, the required torque, the maximum stress at L2 and L4 vertebrae, the screws and rods, and the intervertebral discs were analyzed under displacement control. Results: Under load control, the TSEF model reserved more ROM than the LSIF model. The maximum stresses of screws in the TSEF model were increased, while the maximum stresses of rods were reduced compared to the LSIF model. Moreover, the maximum stresses of L2 and L4 vertebrae and discs in the TSEF model were increased compared to the LSIF model. Under displacement control, the TSEF model required fewer moments (N·mm) than the LSIF model. Compared to the LSIF model, the maximum stresses of screws and rods in the TSEF model have decreased; the maximum stresses at L2 and L4 in the TSEF model were increased. In the flexion condition, the maximum stresses of discs in the TSEF model were less than the LSIF model, while the maximum stresses of discs in the TSEF model were higher in the extension condition. Conclusion: Compared to LSIF, the TSEF has a better stress distribution with higher overall mobility. Theoretically, it reduces the stress concentration of the connecting rods and the stress shielding of the fractured vertebral bodies.

2.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38960407

RESUMO

The optimization of therapeutic antibodies through traditional techniques, such as candidate screening via hybridoma or phage display, is resource-intensive and time-consuming. In recent years, computational and artificial intelligence-based methods have been actively developed to accelerate and improve the development of therapeutic antibodies. In this study, we developed an end-to-end sequence-based deep learning model, termed AttABseq, for the predictions of the antigen-antibody binding affinity changes connected with antibody mutations. AttABseq is a highly efficient and generic attention-based model by utilizing diverse antigen-antibody complex sequences as the input to predict the binding affinity changes of residue mutations. The assessment on the three benchmark datasets illustrates that AttABseq is 120% more accurate than other sequence-based models in terms of the Pearson correlation coefficient between the predicted and experimental binding affinity changes. Moreover, AttABseq also either outperforms or competes favorably with the structure-based approaches. Furthermore, AttABseq consistently demonstrates robust predictive capabilities across a diverse array of conditions, underscoring its remarkable capacity for generalization across a wide spectrum of antigen-antibody complexes. It imposes no constraints on the quantity of altered residues, rendering it particularly applicable in scenarios where crystallographic structures remain unavailable. The attention-based interpretability analysis indicates that the causal effects of point mutations on antibody-antigen binding affinity changes can be visualized at the residue level, which might assist automated antibody sequence optimization. We believe that AttABseq provides a fiercely competitive answer to therapeutic antibody optimization.


Assuntos
Complexo Antígeno-Anticorpo , Aprendizado Profundo , Complexo Antígeno-Anticorpo/química , Antígenos/química , Antígenos/genética , Antígenos/metabolismo , Antígenos/imunologia , Afinidade de Anticorpos , Sequência de Aminoácidos , Biologia Computacional/métodos , Humanos , Mutação , Anticorpos/química , Anticorpos/imunologia , Anticorpos/genética , Anticorpos/metabolismo
3.
IEEE Trans Cybern ; PP2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995705

RESUMO

This article presents a prescribed-time output feedback control (PTOFC) algorithm for cyber-physical systems (CPSs) under output constraint occurring in any finite time interval (OC-AFT) and malicious attacks. The OC-AFT meaning that the output constraint only occurs during a finite number of time periods while being absent in others, which is more general and complex than traditional infinite-time/deferred output constraints. A stretch model-based nonlinear mapping function is constructed to handle the OC-AFT, and a salient advantage is that the proposed algorithm is also suit for CPSs with infinite-time/deferred output (or funnel) constraints, as well as those that are constraint-free, without necessitating changes to the control structure. The uncertain terms (including system model uncertainties, malicious attacks, and external disturbances) are compensated by fuzzy logic systems. Furthermore, a novel practical prescribed-time stability criterion is proposed, under which a novel PTOFC scheme is given. The results demonstrate that the proposed scheme can ensure that both tracking error and observation error converge to a neighborhood centered on zero within a prescribed time, while accommodating the OC-AFT and malicious attacks. Additionally, the settling time remains unaffected by control parameters and initial states, and the limitations of excessive initial control inputs and singularity problems in existing prescribed-time control algorithms are eliminated. The developed algorithm is exemplified through simulation instances.

4.
Front Med (Lausanne) ; 11: 1424644, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021818

RESUMO

Background: Diabetic kidney disease (DKD), one of the microvascular complications in patients with diabetes mellitus, is a common cause of end-stage renal disease. Cellular senescence is believed to be an essential participant in the pathogenesis of DKD. Although there is evidence that Alpiniae oxyphyllae fructus (AOF) can ameliorate DKD progression and organismal senescence, its ability to ameliorate renal cellular senescence in DKD as well as active components and molecular mechanisms remain to be explored. Purpose: This study aimed to investigate the role of AOF in the treatment of cellular senescence in DKD and to explore its active components and potential molecular mechanisms. Methods: The pharmacological efficacy of AOF in ameliorating cellular senescence in DKD was assessed by establishing DKD mouse models and HK-2 cells under high glucose stress. UHPLC-QTOF-MS was used to screen the active compounds in AOF, which were used in conjunction with network pharmacology to predict the molecular mechanism of AOF in the treatment of cellular senescence in DKD. Results: In vivo experiments showed that AOF reduced GLU, mAlb, Scr, BUN, MDA, SOD levels, and ameliorated renal pathological damage and renal cell senescence in DKD mice. In vitro experiments showed that AOF-containing serum improved the decline in HK-2 cell viability and alleviated cellular senescence under high glucose intervention. The results of the UHPLC-QTOF-MS screened 26 active compounds of AOF. The network pharmacological analyses revealed that Cubebin, 2',6'-dihydroxy-4'-methoxydihydrochalcone, Chalcone base + 3O,1Prenyl, Batatasin IV, and Lucidenolactone were the five core compounds and TP53, SRC, STAT3, PIK3CA, and AKT1 are the five core targets of AOF in the treatment of DKD. Molecular docking simulation results showed that the five core compounds had good binding ability to the five core targets. Western blot validated the network pharmacological prediction results and showed that AOF and AOF-containing serum down-regulate the expression of TP53, and phosphorylation of SRC, STAT3, PIK3CA, and AKT. Conclusion: Our study shows that AOF may delay the development of cellular senescence in DKD by down-regulating the levels of TP53, and phosphorylation of SRC, STAT3, PIK3CA, and AKT.

5.
Alzheimers Res Ther ; 16(1): 160, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030577

RESUMO

BACKGROUND: Alpha-lipoic acid (ALA) has a neuroprotective effect on neurodegenerative diseases. In the clinic, ALA can improve cognitive impairments in patients with Alzheimer's disease (AD) and other dementias. Animal studies have confirmed the anti-amyloidosis effect of ALA, but its underlying mechanism remains unclear. In particular, the role of ALA in amyloid-ß precursor protein (APP) metabolism has not been fully elucidated. OBJECTIVE: To investigate whether ALA can reduce the amyloidogenic effect of APP in a transgenic mouse model of AD, and to study the mechanism underlying this effect. METHODS: ALA was infused into 2-month-old APP23/PS45 transgenic mice for 4 consecutive months and their cognitive function and AD-like pathology were then evaluated. An ALA drug concentration gradient was applied to 20E2 cells in vitro to evaluate its effect on the expression of APP proteolytic enzymes and metabolites. The mechanism by which ALA affects APP processing was studied using GI254023X, an inhibitor of A Disintegrin and Metalloproteinase 10 (ADAM10), as well as the mitochondrial toxic drug carbonyl cyanide m-chlorophenylhydrazone (CCCP). RESULTS: Administration of ALA ameliorated amyloid plaque neuropathology in the brain tissue of APP23/PS45 mice and reduced learning and memory impairment. ALA also increased the expression of ADAM10 in 20E2 cells and the non-amyloidogenic processing of APP to produce the 83 amino acid C-terminal fragment (C83). In addition to activating autophagy, ALA also significantly promoted mitophagy. BNIP3L-knockdown reduced the mat/pro ratio of ADAM10. By using CCCP, ALA was found to regulate BNIP3L-mediated mitophagy, thereby promoting the α-cleavage of APP. CONCLUSIONS: The enhanced α-secretase cleavage of APP by ADAM10 is the primary mechanism through which ALA ameliorates the cognitive deficits in APP23/PS45 transgenic mice. BNIP3L-mediated mitophagy contributes to the anti-amyloid properties of ALA by facilitating the maturation of ADAM10. This study provides novel experimental evidence for the treatment of AD with ALA.


Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide , Disfunção Cognitiva , Camundongos Transgênicos , Mitofagia , Ácido Tióctico , Animais , Ácido Tióctico/farmacologia , Mitofagia/efeitos dos fármacos , Proteína ADAM10/metabolismo , Camundongos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Modelos Animais de Doenças , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Masculino
6.
Cardiovasc Toxicol ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008239

RESUMO

Hypertension is a globally prevalent disease, but the pathogenesis remains largely unclear. AMP-activated protein kinase (AMPK) is a nutrition-sensitive signal of cellular energy metabolism, which has a certain influence on the development of hypertension. Previously, we found a down-regulation of the phosphorylated (p-) form of AMPK, and the up-regulation of the angiotensin II type 1 receptor (AT1-R) and that of p-ERK1/2 in the hypothalamic paraventricular nucleus (PVN) of hypertensive rats. However, the exact mechanism underlying the relationship between AMPK and AT1-R in the PVN during hypertension remains unclear. Thus, we hypothesized that AMPK modulates AT1-R through the ERK1/2-NF-κB pathway in the PVN, thereby inhibiting sympathetic nerve activity and improving hypertension. To examine this hypothesis, we employed a renovascular hypertensive animal model developed via two-kidney, one-clip (2K1C) and sham-operated (SHAM). Artificial cerebrospinal fluid (aCSF), used as vehicle, or 5-amino-1-ß-D-ribofuranosyl-imidazole-4-carboxamide (AICAR, an AMPK activator, 60 µg/day) was microinjected bilaterally in the PVN of these rats for 4 weeks. In 2K1C rats, there an increase in systolic blood pressure (SBP) and circulating norepinephrine (NE). Also, the hypertensive rats had lowered expression of p-AMPK and p-AMPK/AMPK, elevated expression of p-ERK1/2, p-ERK1/2/ERK1/2 and AT1-R, increased NF-κB p65 activity in the PVN compared with the levels of these biomarkers in SHAM rats. Four weeks of bilateral PVN injection of AMPK activator AICAR, attenuated the NE level and SBP, increased the expression of p-AMPK and p-AMPK/AMPK, lessened the NF-κB p65 activity, decreased the expression of p-ERK1/2, p-ERK1/2/ERK1/2 and AT1-R in the PVN of 2K1C rats. Data from this study imply that the activation of AMPK within the PVN suppressed AT1-R expression through inhibiting the ERK1/2-NF-κB pathway, decreased the activity of the sympathetic nervous system, improved hypertension.

7.
Front Immunol ; 15: 1403070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015575

RESUMO

Background: The cGAS-STING axis-mediated type I interferon pathway is a crucial strategy for host defense against DNA virus infection. Numerous evasion strategies developed by the pseudorabies virus (PRV) counteract host antiviral immunity. To what extent PRV-encoded proteins evade the cGAS-STING signaling pathway is unknown. Methods: Using US2 stably expressing cell lines and US2-deficient PRV model, we revealed that the PRV tegument protein US2 reduces STING protein stability and downregulates STING-mediated antiviral signaling. Results: To promote K48-linked ubiquitination and STING degradation, US2 interacts with the LBD structural domain of STING and recruits the E3 ligase TRIM21. TRIM21 deficiency consistently strengthens the host antiviral immune response brought on by PRV infection. Additionally, US2-deficient PRV is less harmful in mice. Conclusions: Our study implies that PRV US2 inhibits IFN signaling by a new mechanism that selectively targets STING while successfully evading the host antiviral response. As a result, the present study reveals a novel strategy by which PRV evades host defense and offers explanations for why the Bartha-K61 classical vaccine strain failed to offer effective defense against PRV variant strains in China, indicating that US2 may be a key target for developing gene-deficient PRV vaccines.


Assuntos
Herpesvirus Suídeo 1 , Imunidade Inata , Proteínas de Membrana , Nucleotidiltransferases , Pseudorraiva , Transdução de Sinais , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/genética , Transdução de Sinais/imunologia , Herpesvirus Suídeo 1/imunologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/imunologia , Camundongos , Pseudorraiva/imunologia , Pseudorraiva/virologia , Humanos , Ubiquitinação , Ribonucleoproteínas/imunologia , Ribonucleoproteínas/metabolismo , Evasão da Resposta Imune , Interações Hospedeiro-Patógeno/imunologia , Células HEK293
8.
Am J Cardiol ; 226: 9-17, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972534

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) is a common risk factor for hematologic malignancies and cardiovascular diseases. This study aimed to investigate the association between CHIP-related mutations and symptomatic heart failure (HF) in patients diagnosed with acute myeloid leukemia (AML). A total of 563 patients with newly diagnosed AML who underwent DNA sequencing of bone marrow before treatment were retrospectively investigated. Cox proportional hazard regression models and Fine and Gray's subdistribution hazard regression models were used to assess the association between CHIP-related mutations and symptomatic HF. A total of 79.0% patients had at least 1 CHIP-related mutation; the most frequent mutations were DNMT3A, ASXL1, and TET2. A total of 51 patients (9.1%) developed symptomatic HF. The incidence of symptomatic HF was more frequent in patients with DNMT3A mutations (p <0.01), with a 1-year cumulative incidence of symptomatic HF in patients with DNMT3A mutations of 11.4%, compared with 3.9% in patients with wild-type DNMT3A (p <0.01). After adjustment for age and anthracyclines dose, DNMT3A mutations remained independently correlated with HF (hazard ratio 2.32, 95% confidence interval 1.26 to 4.29, p = 0.01). In conclusion, in patients with AML, the presence of DNMT3A mutations was associated with a twofold increased risk for symptomatic HF, irrespective of age and anthracyclines use.

9.
Thorac Cancer ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881388

RESUMO

BACKGROUND: Limited literature exists on the feasibility and effectiveness of integrating stereotactic ablative radiotherapy (SABR) techniques with hyperfractionated regimens for patients with lung cancer. This study aims to assess whether the SABR technique with hyperfractionation can potentially reduce lung toxicity. METHODS: We utilized the linear-quadratic model to find the optimal fraction to maximize the tumor biological equivalent dose (BED) to normal-tissue BED ratio. Validation was performed by comparing the SABR plans with 50 Gy/5 fractions and hyperfractionationed plans with 88.8 Gy/74 fractions with the same tumor BED and planning criteria for 10 patients with early-stage lung cancer. Mean lung BED, Lyman-Kutcher-Burman (LKB) normal tissue complication probability (NTCP), critical volume (CV) criteria (volume below BED of 22.92 and 25.65 Gy, and mean BED for lowest 1000 and 1500 cc) and the percentage of the lung receiving 20Gy or more (V20) were compared using the Wilcoxon signed-rank test. RESULTS: The transition point occurs when the tumor-to-normal tissue ratio (TNR) of the physical dose equals the TNR of α/ß in the BED dose-volume histogram of the lung. Compared with the hypofractionated regimen, the hyperfractionated regimen is superior in the dose range above but inferior below the transition point. The hyperfractionated regimen showed a lower mean lung BED (6.40 Gy vs. 7.73 Gy) and NTCP (3.50% vs. 4.21%), with inferior results concerning CV criteria and higher V20 (7.37% vs. 7.03%) in comparison with the hypofractionated regimen (p < 0.01 for all). CONCLUSIONS: The hyperfractionated regimen has an advantage in the high-dose region of the lung but a disadvantage in the low-dose region. Further research is needed to determine the superiority between hypo- and hyperfractionation.

10.
J Community Health Nurs ; : 1-9, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38909288

RESUMO

We aimed to analyze the effects of exclusive breastfeeding duration on the occurrence and course of pneumonia in infants aged up to 6 months. Prospective case-control study. This study was conducted from August 2020 to August 2022 at a maternity and child health hospital in China. A total of 218 infants up to 6 months of age with pneumonia were included in the analyses. Health data were obtained using a hospitalization information system or an interview-based questionnaire. Univariate and multivariate logistic regression analyses were performed to analyze the data. The incidence of pneumonia, hospitalization duration, and costs to participants were significantly affected by the duration of exclusive breastfeeding (p < 0.01). The incidence of pneumonia among participants with different exclusive breastfeeding durations also differed significantly (p < 0.01). The shorter the duration of exclusive breastfeeding, the higher the incidence of pneumonia among infants. We found that the longer the exclusive breastfeeding duration in infants up to 6 months of age, the lower the recurrence of pneumonia, the shorter the hospital stay, and the lower the hospital costs. The rate of exclusive breastfeeding for infants up to 6 months of age should be increased as much as possible to reduce the occurrence of pneumonia and hospital costs.

11.
J Chem Inf Model ; 64(13): 5016-5027, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920330

RESUMO

The intricate interaction between major histocompatibility complexes (MHCs) and antigen peptides with diverse amino acid sequences plays a pivotal role in immune responses and T cell activity. In recent years, deep learning (DL)-based models have emerged as promising tools for accelerating antigen peptide screening. However, most of these models solely rely on one-dimensional amino acid sequences, overlooking crucial information required for the three-dimensional (3-D) space binding process. In this study, we propose TransfIGN, a structure-based DL model that is inspired by our previously developed framework, Interaction Graph Network (IGN), and incorporates sequence information from transformers to predict the interactions between HLA-A*02:01 and antigen peptides. Our model, trained on a comprehensive data set containing 61,816 sequences with 9051 binding affinity labels and 56,848 eluted ligand labels, achieves an area under the curve (AUC) of 0.893 on the binary data set, better than state-of-the-art sequence-based models trained on larger data sets such as NetMHCpan4.1, ANN, and TransPHLA. Furthermore, when evaluated on the IEDB weekly benchmark data sets, our predictions (AUC = 0.816) are better than those of the recommended methods like the IEDB consensus (AUC = 0.795). Notably, the interaction weight matrices generated by our method highlight the strong interactions at specific positions within peptides, emphasizing the model's ability to provide physical interpretability. This capability to unveil binding mechanisms through intricate structural features holds promise for new immunotherapeutic avenues.


Assuntos
Aprendizado Profundo , Antígeno HLA-A2 , Peptídeos , Antígeno HLA-A2/química , Antígeno HLA-A2/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Humanos , Ligação Proteica , Modelos Moleculares , Sequência de Aminoácidos , Conformação Proteica
12.
Sci Total Environ ; 945: 173967, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897474

RESUMO

Ammonia (NH3), which is a precursor of secondary particulate matter (PM), can be produced through three-way catalyst (TWC) side reactions in light-duty gasoline vehicles (LDGVs), posing a threat to human health and air quality. To explore ammonia emission characteristics, 8 LDGVs and 1 hybrid electric light-duty vehicle (HEV) with various mileages traveled were analyzed with a chassis dynamometer system during regulation driving cycles. The emission factors of the adopted China VI in-use LDGVs were 7.04 ± 2.61 mg/km under cold-start conditions and 4.94 ± 1.69 mg/km under hot-start conditions. With increasing mileage traveled, the total ammonia emissions increased, and the difference between the cold/hot-start results decreased. The emissions of in-use LDGVs with bi-fuel engines were analyzed, and more ammonia was generated in the compressed natural gas (CNG) mode through the hydrocarbon (HC) reforming reaction. The relationship between the emissions of ammonia and conventional pollutants was established. During the initial cold-start phase, a delay in ammonia formation was observed, and the ammonia emissions conformed with the CO and HC emissions after exhaust heating. Vehicle specific power (VSP) analysis revealed that the interval of highest ammonia emissions corresponded to acceleration events at high speeds. For the HEV, the transition from motor to engine drive conditions contributed to ammonia emission occurrence because of the more pronounced cold-start events. The use of HEV technology could introduce additional uncertainties in controlling urban ammonia emissions. Detailed analysis of emission characteristics could provide data support for future research on ammonia emission standards and control strategies for LDGVs.

13.
Front Immunol ; 15: 1368852, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933264

RESUMO

The classical pathway of the complement system is activated by the binding of C1q in the C1 complex to the target activator, including immune complexes. Factor H is regarded as the key downregulatory protein of the complement alternative pathway. However, both C1q and factor H bind to target surfaces via charge distribution patterns. For a few targets, C1q and factor H compete for binding to common or overlapping sites. Factor H, therefore, can effectively regulate the classical pathway activation through such targets, in addition to its previously characterized role in the alternative pathway. Both C1q and factor H are known to recognize foreign or altered-self materials, e.g., bacteria, viruses, and apoptotic/necrotic cells. Clots, formed by the coagulation system, are an example of altered self. Factor H is present abundantly in platelets and is a well-known substrate for FXIIIa. Here, we investigated whether clots activate the complement classical pathway and whether this is regulated by factor H. We show here that both C1q and factor H bind to the fibrin formed in microtiter plates and the fibrin clots formed under in vitro physiological conditions. Both C1q and factor H become covalently bound to fibrin clots, and this is mediated via FXIIIa. We also show that fibrin clots activate the classical pathway of complement, as demonstrated by C4 consumption and membrane attack complex detection assays. Thus, factor H downregulates the activation of the classical pathway induced by fibrin clots. These results elucidate the intricate molecular mechanisms through which the complement and coagulation pathways intersect and have regulatory consequences.


Assuntos
Coagulação Sanguínea , Complemento C1q , Fator H do Complemento , Via Clássica do Complemento , Fibrina , Humanos , Fator H do Complemento/metabolismo , Fator H do Complemento/imunologia , Fibrina/metabolismo , Complemento C1q/metabolismo , Complemento C1q/imunologia , Via Clássica do Complemento/imunologia , Ligação Proteica , Ativação do Complemento/imunologia , Plaquetas/imunologia , Plaquetas/metabolismo
14.
J Chem Inf Model ; 64(14): 5381-5391, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38920405

RESUMO

Artificial intelligence (AI)-aided drug design has demonstrated unprecedented effects on modern drug discovery, but there is still an urgent need for user-friendly interfaces that bridge the gap between these sophisticated tools and scientists, particularly those who are less computer savvy. Herein, we present DrugFlow, an AI-driven one-stop platform that offers a clean, convenient, and cloud-based interface to streamline early drug discovery workflows. By seamlessly integrating a range of innovative AI algorithms, covering molecular docking, quantitative structure-activity relationship modeling, molecular generation, ADMET (absorption, distribution, metabolism, excretion and toxicity) prediction, and virtual screening, DrugFlow can offer effective AI solutions for almost all crucial stages in early drug discovery, including hit identification and hit/lead optimization. We hope that the platform can provide sufficiently valuable guidance to aid real-word drug design and discovery. The platform is available at https://drugflow.com.


Assuntos
Inteligência Artificial , Descoberta de Drogas , Descoberta de Drogas/métodos , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Algoritmos , Desenho de Fármacos , Software , Humanos , Computação em Nuvem
16.
Adv Sci (Weinh) ; : e2404456, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38894569

RESUMO

Considerable progress has been made in the development of drug delivery systems for diabetic wounds. However, underlying drawbacks, such as low delivery efficiency and poor tissue permeability, have rarely been addressed. In this study, a multifunctional biohybrid nanorobot platform comprising an artificial unit and several biological components is constructed. The artificial unit is a magnetically driven nanorobot surface modified with antibacterial 2-hydroxypropyltrimethyl ammonium chloride chitosan, which enables the entire platform to move and has excellent tissue penetration capacity. The biological components are two-step engineered extracellular vesicles that are first loaded with mangiferin, a natural polyphenolic compound with antioxidant properties, and then glycoengineered on the surface to enhance cellular uptake efficiency. As expected, the platform is more easily absorbed by endothelial cells and fibroblasts and exhibits outstanding dermal penetration performance and antioxidant properties. Encouraging results are also observed in infected diabetic wound models, showing improved wound re-epithelialization, collagen deposition, angiogenesis, and accelerated wound healing. Collectively, a biohybrid nanorobot platform that possesses the functionalities of both artificial units and biological components serves as an efficient delivery system to promote diabetic wound repair through dual-enhanced cell and tissue penetration and multistep interventions.

17.
Front Neurosci ; 18: 1416522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872941

RESUMO

Background: Long term hypertension seriously promotes target organ damage in the brain and heart, and has increasingly become serious public health problem worldwide. The anti-hypertensive effects of capsaicin has been reported, however, the role and mechanism of capsaicin within the brain on salt-induced hypertension have yet to be elucidated. This study aimed to verify the hypothesis that capsaicin attenuates salt-induced hypertension via the AMPK/Akt/Nrf2 pathway in hypothalamic paraventricular nucleus (PVN). Methods: Dahl salt-sensitive (Dahl S) rats were used as animal model for the present study. Rats were randomly divided into four groups based on their dietary regimen (0.3% normal salt diet and 8% high salt diet) and treatment methods (infusion of vehicle or capsaicin in the PVN). Capsaicin was chronically administered in the PVN throughout the animal experiment phase of the study that lasted 6 weeks. Results: Our results demonstrated that PVN pretreatment with capsaicin can slow down raise of the blood pressure elevation and heart rate (HR) of Dahl S hypertensive rats given high salt diet. Interestingly, the cardiac hypertrophy was significantly improved. Furthermore, PVN pretreatment with capsaicin induced decrease in the expression of mRNA expression of NADPH oxidase-2 (NOX2), inducible nitric oxide synthase (iNOS), NOX4, p-IKKß and proinflammatory cytokines and increase in number of positive cell level for Nrf2 and HO-1 in the PVN of Dahl S hypertensive rats. Additionally, the protein expressions of phosphatidylinositol 3-kinase (p-PI3K) and phosphorylated protein kinase-B (p-AKT) were decreased, phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) were increased after the PVN pretreatment with capsaicin. Conclusion: Capsaicin pretreatment attenuates salt-sensitive hypertension by alleviating AMPK/Akt/iNOS pathway in the PVN.

18.
Chem Sci ; 15(23): 8946-8958, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38873054

RESUMO

The amyloid states of proteins are implicated in several neurodegenerative diseases and bioadhesion processes. However, the classical amyloid fibrillization mechanism fails to adequately explain the formation of polymorphic aggregates and their adhesion to various surfaces. Herein, we report a non-fibril amyloid aggregation pathway, with disulfide-bond-reduced lysozyme (R-Lyz) as a model protein under quasi-physiological conditions. Very different from classical fibrillization, this pathway begins with the air-water interface (AWI) accelerated oligomerization of unfolded full-length protein, resulting in unique plate-like oligomers with self-adaptive ability, which can adjust their conformations to match various interfaces such as the asymmetric AWI and amyloid-protein film surface. The pathway enables a stepwise packing of the plate-like oligomers into a 2D Janus nanofilm, exhibiting a divergent distribution of hydrophilic/hydrophobic residues on opposite sides of the nanofilm. The resulting Janus nanofilm possesses a top-level Young's modulus (8.3 ± 0.6 GPa) among amyloid-based materials and exhibits adhesive strength two times higher (145 ± 81 kPa) than that of barnacle cement. Furthermore, we found that such an interface-directed pathway exists in several amyloidogenic proteins with a similar self-adaptive 2D-aggregation process, including bovine serum albumin, insulin, fibrinogen, hemoglobin, lactoferrin, and ovalbumin. Thus, our findings on the non-fibril self-adaptive mechanism for amyloid aggregation may shed light on polymorphic amyloid assembly and their adhesions through an alternative pathway.

19.
Int J Biol Macromol ; 270(Pt 1): 132311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740154

RESUMO

The present study aimed to investigate the structural and physicochemical characteristics of alkali-extracted pectic polysaccharide (AkPP) and to evaluate its prebiotic effects. AkPP was obtained from pumpkin pulp using an alkaline extraction method. AkPP, which had a molecular weight (Mw) of mainly 13.67 kDa and an esterification degree of 9.60%, was composed mainly of galacturonic acid (GalA), rhamnose (Rha), galactose, and arabinose. The ratio of the homogalacturonan (HG) region to the rhamnogalacturonan-I (RG-I) region in AkPP was 48.74:43.62. In the nuclear magnetic resonance spectrum, the signals indicating α-1,4-linked D-GalA, α-1,2-linked L-Rha, α-1,2,4-linked L-Rha residues were well resolved, demonstrating the presence of the HG and RG-I regions in its molecular structure. Collectively, AkPP was low methoxyl pectin rich in the RG-I region with short side chains and had a low Mw. Thermal analysis revealed that AkPP had good thermal stability. Compared to inulin, AkPP more effectively promoted the proliferation of Lactobacillus acidophilus, Lacticaseibacillus rhamnosus GG, Lacticaseibacillus casei, and Lacticaseibacillus paracasei and the production of lactic, acetic, and propionic acids. This study presents the unique structural features of AkPP and provides a scientific basis for further investigation of the potential of AkPP as a promising prebiotic.


Assuntos
Cucurbita , Peso Molecular , Pectinas , Prebióticos , Pectinas/química , Cucurbita/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Ramnose/química , Álcalis/química , Soluções , Ácidos Hexurônicos
20.
Biomed Pharmacother ; 175: 116734, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754264

RESUMO

Spinal cord injury (SCI) is a type of central nervous system (CNS) injury in which ferroptosis is becoming a promising target for treatment. Alpha-tocopherol (Vitamin E, Vit E) is a compound with anti-ferroptosis activity. The mechanism of alpha-tocopherol in regulating ferroptosis after SCI has not been deeply studied. In this study, rats with SCI were treated by Alpha-tocopherol based on bioinformatic analysis and molecular docking prediction. Behavioral tests and histological findings showed that Alpha-tocopherol promoted neural function recovery and tissue repairment in rats with SCI. Subsequently, regulatory effects of Alpha-tocopherol on Alox15 and ferroptosis were detected and then localized by immunofluorescence. In vitro, alpha-tocopherol improved the ROS accumulation, iron overload, lipid peroxidation and mitochondrial dysfunction. The effects of Alpha-tocopherol on the expression of Alox15, Ptgs2 and 4Hne were validated in vitro. Finally, the inhibitory effects of Alpha-tocopherol on Alox15 and ferroptosis were weakened by the mutation of 87th residue of Alox15. In summary, alpha-tocopherol could alleviate SCI-induced ferroptosis by downregulating Alox15 to promote neural function recovery in rats with SCI. Findings in this study could help further our understanding on SCI-induced ferroptosis and provide a novel insight for treating SCI.


Assuntos
Araquidonato 15-Lipoxigenase , Regulação para Baixo , Ferroptose , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , alfa-Tocoferol , Animais , Ferroptose/efeitos dos fármacos , alfa-Tocoferol/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ratos , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 12-Lipoxigenase/genética , Modelos Animais de Doenças , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...