Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Med Entomol ; 61(3): 781-790, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38408183

RESUMO

The Pacific Coast tick (Dermacentor occidentalis Marx, 1892) is a frequently encountered and commonly reported human-biting tick species that has been recorded from most of California and parts of southwestern Oregon, southcentral Washington, and northwestern Mexico. Although previous investigators have surveyed populations of D. occidentalis for the presence of Rickettsia species across several regions of California, populations of this tick have not been surveyed heretofore for rickettsiae from Baja California, Oregon, or Washington. We evaluated 1,367 host-seeking, D. occidentalis adults collected from 2015 to 2022 by flagging vegetation at multiple sites in Baja California, Mexico, and Oregon and Washington, United States, using genus- and species-specific assays for spotted fever group rickettsiae. DNA of Rickettsia 364D, R. bellii, and R. tillamookensis was not detected in specimens from these regions. DNA of R. rhipicephali was detected in D. occidentalis specimens obtained from Ensenada Municipality in Baja California and southwestern Oregon, but not from Washington. All ompA sequences of R. rhipichephali that were amplified from individual ticks in southwestern Oregon were represented by a single genotype. DNA of the Ixodes pacificus rickettsial endosymbiont was amplified from specimens collected in southwestern Oregon and Klickitat County, Washington; to the best of our knowledge, this Rickettsia species has never been identified in D. occidentalis. Collectively, these data are consistent with a relatively recent introduction of Pacific Coast ticks in the northernmost extension of its recognized range.


Assuntos
Dermacentor , Rickettsia , Animais , Rickettsia/isolamento & purificação , Rickettsia/genética , Dermacentor/microbiologia , Washington , Oregon , Feminino , México , Masculino
2.
mSphere ; 6(6): e0059821, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34730378

RESUMO

Coccidioides immitis and Coccidioides posadasii are causative agents of Valley fever, a serious fungal disease endemic to regions with hot, arid climate in the United States, Mexico, and Central and South America. The environmental niche of Coccidioides spp. is not well defined, and it remains unknown whether these fungi are primarily associated with rodents or grow as saprotrophs in soil. To better understand the environmental reservoir of these pathogens, we used a systematic soil sampling approach, quantitative PCR (qPCR), culture, whole-genome sequencing, and soil chemical analysis to identify factors associated with the presence of C. immitis at a known colonization site in Washington State linked to a human case in 2010. We found that the same strain colonized an area of over 46,000 m2 and persisted in soil for over 6 years. No association with rodent burrows was observed, as C. immitis DNA was as likely to be detected inside rodent holes as it was in the surrounding soil. In addition, the presence of C. immitis DNA in soil was correlated with elevated levels of boron, calcium, magnesium, sodium, and silicon in soil leachates. We also observed differences in the microbial communities between C. immitis-positive and -negative soils. Our artificial soil inoculation experiments demonstrated that C. immitis can use soil as a sole source of nutrients. Taken together, these results suggest that soil parameters need to be considered when modeling the distribution of this fungus in the environment. IMPORTANCE Coccidioidomycosis is considered a highly endemic disease for which geographic range is likely to expand from climate change. A better understanding of the ecological niche of Coccidioides spp. is essential for generating accurate distribution maps and predicting future changes in response to the changing environment. Our study used a systematic sampling strategy, advanced molecular detection methods, and soil chemical analysis to identify environmental factors associated with the presence of C. immitis in soil. Our results demonstrate the fungus can colonize the same areas for years and is associated with chemical and microbiological soil characteristics. Our results suggest that in addition to climate parameters, soil characteristics need to be considered when building habitat distribution models for this pathogen.


Assuntos
Coccidioides/isolamento & purificação , Coccidioidomicose/epidemiologia , Coccidioidomicose/microbiologia , Microbiologia do Solo , Coccidioides/genética , DNA Fúngico/química , DNA Fúngico/genética , Doenças Endêmicas , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Washington
3.
Emerg Infect Dis ; 26(4): 648-657, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32187009

RESUMO

Tickborne diseases are rare in Washington, USA, and the ecology of these pathogens is poorly understood. We integrated surveillance data from humans and ticks to better describe their epidemiology and ecology. During 2011-2016, a total of 202 tickborne disease cases were reported in Washington residents. Of these, 68 (34%) were autochthonous, including cases of Lyme disease, Rocky Mountain spotted fever, tickborne relapsing fever, and tularemia. During May 2011-December 2016, we collected 977 host-seeking ticks, including Ixodes pacificus, I. angustus, I. spinipalpis, I. auritulus, Dermacentor andersoni, and D. variabilis ticks. The prevalence of Borrelia burgdorferi sensu stricto in I. pacificus ticks was 4.0%; of B. burgdorferi sensu lato, 3.8%; of B. miyamotoi, 4.4%; and of Anaplasma phagocytophilum, 1.9%. We did not detect Rickettsia rickettsii in either Dermacentor species. Case-patient histories and detection of pathogens in field-collected ticks indicate that several tickborne pathogens are endemic to Washington.


Assuntos
Anaplasma phagocytophilum , Borrelia burgdorferi , Ixodes , Doença de Lyme , Anaplasma phagocytophilum/genética , Animais , Humanos , Washington/epidemiologia
4.
J Am Mosq Control Assoc ; 33(1): 60-63, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28388317

RESUMO

Routine West Nile virus (WNV) surveillance in 2016 by the Washington State Department of Health resulted in 1 new state distribution record for Aedes hendersoni, bringing the total number of mosquito species reported from Washington to 52. We also report new county records for Aedes japonicus japonicus, Aedes togoi, and Culex salinarius .


Assuntos
Aedes/fisiologia , Distribuição Animal , Culex/fisiologia , Mosquitos Vetores/fisiologia , Animais , Feminino , Masculino , Washington
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...