Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(9): 093527, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182470

RESUMO

Capacitive plasma pickup is a well-known and difficult problem for plasma-facing edge diagnostics. This problem must be addressed to ensure an accurate and robust interpretation of the real signal measurements vs noise. The Faraday cup fast ion loss detector array of the Joint European Torus (JET) is particularly prone to this issue and can be used as a testbed to prototype solutions. The issue of separation and distinction between warranted fast ion signal and electromagnetic plasma noise has traditionally been solved with hardware modifications, but a more versatile post-processing approach is of great interest. This work presents post-processing techniques to characterize the signal noise. While hardware changes and advancements may be limited, the combination with post-processing procedures allows for more rapid and robust analysis of measurements. The characterization of plasma pickup noise is examined for alpha losses in a discharge from JET's tritium campaign. In addition to highlighting the post-processing methodology, the spatial sensitivity of the detector array is also examined, which presents significant advantages for the physical interpretation of fast ion losses.

2.
Rev Sci Instrum ; 91(2): 023507, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32113444

RESUMO

The Charge Exchange Recombination Spectroscopy (CXRS) diagnostic has become a routine diagnostic on almost all major high temperature fusion experimental devices. For the optimized stellarator Wendelstein 7-X (W7-X), a highly flexible and extensive CXRS diagnostic has been built to provide high-resolution local measurements of several important plasma parameters using the recently commissioned neutral beam heating. This paper outlines the design specifics of the W7-X CXRS system and gives examples of the initial results obtained, including typical ion temperature profiles for several common heating scenarios, toroidal flow and radial electric field derived from velocity measurements, beam attenuation via beam emission spectra, and normalized impurity density profiles under some typical plasma conditions.

3.
Rev Sci Instrum ; 88(7): 073508, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28764552

RESUMO

A new core charge exchange recombination spectroscopy diagnostic has been installed in the ASDEX Upgrade tokamak that is capable of measuring the impurity ion temperature, toroidal rotation, and density on both the low field side (LFS) and high field side (HFS) of the plasma. The new system features 48 lines-of-sight (LOS) with a radial resolution that varies from ±2 cm on the LFS down to ±0.75 cm on the HFS and has sufficient signal to run routinely at 10 ms and for special circumstances down to 2.5 ms integration time. The LFS-HFS ion temperature profiles provide an additional constraint on the magnetic equilibrium reconstruction, and the toroidal rotation frequency profiles are of sufficiently high quality that information on the poloidal velocity can be extracted from the LFS-HFS asymmetry. The diagnostic LOS are coupled to two flexible-wavelength spectrometers such that complete LFS-HFS profiles from two separate impurities can be imaged simultaneously, albeit with reduced radial coverage. More frequently, the systems measure the same impurity providing very detailed information on the chosen species. Care has been taken to calibrate the systems as accurately as possible and to include in the data analysis any effects that could lead to spurious temperatures or rotations.

4.
Rev Sci Instrum ; 88(3): 033509, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28372367

RESUMO

In magnetically confined fusion plasmas controlled gas injection is crucial for plasma fuelling as well as for various diagnostic applications such as active spectroscopy. We present a new, versatile system for the injection of collimated thermal gas beams into a vacuum chamber. This system consists of a gas pressure chamber, sealed by a custom made piezo valve towards a small capillary for gas injection. The setup can directly be placed inside of the vacuum chamber of fusion devices as it is small and immune against high magnetic fields. This enables gas injection close to the plasma periphery with high duty cycles and fast switch on/off times ≲ 0.5 ms. In this work, we present the design details of this new injection system and a systematic characterization of the beam properties as well as the gas flowrates which can be accomplished. The thin and relatively short capillary yields a small divergence of the injected beam with a half opening angle of 20°. The gas box is designed for pre-fill pressures of 10 mbar up to 100 bars and makes a flowrate accessible from 1018 part/s up to 1023 part/s. It hence is a versatile system for both diagnostic as well as fuelling applications. The implementation of this system in ASDEX Upgrade will be described and its application for line ratio spectroscopy on helium will be demonstrated on a selected example.

5.
Rev Sci Instrum ; 83(10): 10D515, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126857

RESUMO

A feasibility study for the use of core charge exchange recombination spectroscopy on ITER has shown that accurate measurements on the helium ash require a spectrometer with a high etendue of 1mm(2)sr to comply with the measurement requirements [S. Tugarinov et al., Rev. Sci. Instrum. 74, 2075 (2003)]. To this purpose such an instrument has been developed consisting of three separate wavelength channels (to measure simultaneously He/Be, C/Ne, and H/D/T together with the Doppler shifted direct emission of the diagnostic neutral beam, the beam emission (BES) signal), combining high dispersion (0.02 nm/pixel), sufficient resolution (0.2 nm), high efficiency (55%), and extended wavelength range (14 nm) at high etendue. The combined measurement of the BES along the same sightline within a third wavelength range provides the possibility for in situ calibration of the charge eXchange recombination spectroscopy signals. In addition, the option is included to use the same instrument for measurements of the fast fluctuations of the beam emission intensity up to 2 MHz, with the aim to study MHD activity.

6.
Rev Sci Instrum ; 83(10): 10D519, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126860

RESUMO

Investigation of impurity transport properties in tokamak plasmas is essential and a diagnostic that can provide information on the impurity content is required. Combining charge exchange recombination spectroscopy (CXRS) and beam emission spectroscopy (BES), absolute radial profiles of impurity densities can be obtained from the CXRS and BES intensities, electron density and CXRS and BES emission rates, without requiring any absolute calibration of the spectra. The technique is demonstrated here with absolute impurity density radial profiles obtained in TEXTOR plasmas, using a high efficiency charge exchange spectrometer with high etendue, that measures the CXRS and BES spectra along the same lines-of-sight, offering an additional advantage for the determination of absolute impurity densities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...