Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38399752

RESUMO

Streptococcus thermophilus is widely used as a starter culture in the dairy industry and has garnered attention as a beneficial bacterium owing to its health-promoting functionalities in humans. In this study, the probiotic potential of S. thermophilus MCC0200 isolated from a dairy product was investigated through a combinatorial approach of in vitro and in silico studies. MCC0200 demonstrated the ability to survive harsh gastrointestinal (GI) transit, adhere to intestinal mucosa and exert health-promoting traits in in vitro studies. These findings were corroborated with in silico evidence, wherein, MCC0200 genome harboured genes associated with tolerance to GI conditions, intestinal adhesion and colonization. Genome mapping also highlighted the ability of MCC0200 to produce compounds advantageous for the host (folate, bacteriocins), to release antioxidant enzymes that can quench the free radicals (superoxide dismutase, NADH peroxidase), and to metabolize food components that can be harmful to sensitive people (lactose). MCC0200 also demonstrated a positive effect on reducing cholesterol levels, proving to be a potential candidate for food and pharmaceutical applications. The absence of transmissible antibiotic resistance genes and virulence genes underscored the generally regarded as safe (GRAS) nature of MCC0200. This study explored the potential of Streptococcus thermophilus for its probable applications as a probiotic beyond the dairy industry.

2.
Antonie Van Leeuwenhoek ; 115(1): 19-31, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34734348

RESUMO

Laboratory evaluation of hyperthermophiles with the potential for Enhanced Oil Recovery (EOR) is often hampered by the difficulties in replicating the in situ growth conditions in the laboratory. In the present investigation, genome analysis was used to gain insights into the metabolic potential of a hyperthermophile to mobilize the residual oil from depleting high-temperature oil reservoirs. Here, we report the 1.9 Mb draft genome sequence of a hyperthermophilic anaerobic archaeon, Thermococcus sp. 101C5, with a GC content of 44%, isolated from a high-temperature oil reservoir of Gujarat, India. 101C5 possessed the genetic arsenal required for adaptation to harsh oil reservoir conditions, such as various heat shock proteins for thermo-adaptation, Trk potassium uptake system proteins for osmo-adaptation, and superoxide reductases against oxidative stress. Microbial Enhanced Oil Recovery (MEOR) potential of the strain was established by ascertaining the presence of genes encoding enzymes involved in the production of the metabolites such as hydrogen, bio-emulsifier, acetate, exopolysaccharide, etc. Production of these metabolites which pressurize the reservoir, emulsify the crude oil, lower the viscosity and reduce the drag, thus facilitating mobilization of the residual oil was experimentally confirmed. Also, the presence of crude oil degradative genes highlighted the ability of the strain to mobilize heavy residual oil, which was confirmed under simulated conditions in sand-pack studies. The obtained results demonstrated additional oil recoveries of 42.1% and 56.5% at 96 °C and 101 °C, respectively, by the strain 101C5, illustrating its potential for application in high-temperature oil reservoirs. To our best knowledge, this is the first report of genome analysis of any microbe assessed for its suitability for MEOR from the high-temperature oil reservoir.


Assuntos
Petróleo , Thermococcus , Genômica , Laboratórios , Campos de Petróleo e Gás , Thermococcus/genética
3.
Genome Announc ; 5(15)2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28408669

RESUMO

Nesterenkonia sp. strain PF2B19, a psychrophilic bacterium, was isolated from 44,800-year-old permafrost. The draft genome sequence of this strain revealed the presence of genes involved in the production of cold active enzymes, carotenoid biosynthesis, fatty acid biosynthesis, and resistance to heavy metals. These results show the immense potential of the strain.

4.
Genome Announc ; 5(15)2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28408670

RESUMO

Marinobacter sp. strain AC-23 was isolated from Kongsfjorden in the Arctic. Here, we report the first draft genome sequence of a putative novel species of the genus Marinobacter comprising 4,149,715 bp, with a mean G+C content of 54.4%. The draft genome sequence will aid in understanding the psychrophilic and sea ice-specific lifestyle.

5.
Microbiol Res ; 192: 192-202, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27664737

RESUMO

Snow ecosystems represent a large part of the Earth's biosphere and harbour diverse microbial communities. Despite our increased knowledge of snow microbial communities, the question remains as to their functional potential, particularly with respect to their role in adapting to and modifying the specific snow environment. In this work, we investigated the diversity and functional capabilities of microorganisms from 3 regions of East Antarctica, with respect to compounds present in snow and tested whether their functional signature reflected the snow environment. A diverse assemblage of bacteria (Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, Deinococcus-Thermus, Planctomycetes, Verrucomicrobia), archaea (Euryarchaeota), and eukarya (Basidiomycota, Ascomycota, Cryptomycota and Rhizaria) were detected through culture-dependent and -independent methods. Although microbial communities observed in the three snow samples were distinctly different, all isolates tested produced one or more of the following enzymes: lipase, protease, amylase, ß-galactosidase, cellulase, and/or lignin modifying enzyme. This indicates that the snow pack microbes have the capacity to degrade organic compounds found in Antarctic snow (proteins, lipids, carbohydrates, lignin), thus highlighting their potential to be involved in snow chemistry.


Assuntos
Ecossistema , Microbiologia Ambiental , Microbiota , Neve/microbiologia , Regiões Antárticas , Archaea/classificação , Bactérias/classificação , Biodiversidade , Fungos/classificação , Metagenoma , Metagenômica/métodos
6.
Microb Ecol ; 71(3): 519-23, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26547566

RESUMO

Flooded rice fields are important sources of atmospheric methane. Aerobic methanotrophs living in the vicinity of rice roots oxidize methane and act as environmental filters. Here, we present genome characteristics of a gammaproteobacterial methanotroph, isolate Sn10-6, which was isolated from a rice rhizosphere of a flooded field in India. Sn10-6 has been identified as a member of a putative novel genus and species within the family Methylococcaceae (Type I methanotrophs). The draft genome of Sn10-6 showed pathways for the following: methane oxidation, formaldehyde assimilation (RuMP), nitrogen fixation, conversion of nitrite to nitrous oxide, and other interesting genes including the ones responsible for survival in the rhizosphere environment. The majority of genes found in this genome were most similar to Methylovulum miyakonese which is a forest isolate. This draft genome provided insight into the physiology, ecology, and phylogeny of this gammaproteobacterial methanotroph.


Assuntos
Genoma Bacteriano , Metano/metabolismo , Methylococcaceae/genética , Oryza/crescimento & desenvolvimento , Microbiologia do Solo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Inundações , Índia , Methylococcaceae/classificação , Methylococcaceae/isolamento & purificação , Methylococcaceae/metabolismo , Oryza/microbiologia , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rizosfera
7.
Microb Ecol ; 71(3): 634-44, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26547567

RESUMO

Methanotrophs play a crucial role in filtering out methane from habitats, such as flooded rice fields. India has the largest area under rice cultivation in the world; however, to the best of our knowledge, methanotrophs have not been isolated and characterized from Indian rice fields. A cultivation strategy composing of a modified medium, longer incubation time, and serial dilutions in microtiter plates was used to cultivate methanotrophs from a rice rhizosphere sample from a flooded rice field in Western India. We compared the cultured members with the uncultured community as revealed by three culture-independent methods. A novel type Ia methanotroph (Sn10-6), at the rank of a genus, and a putative novel species of a type II methanotroph (Sn-Cys) were cultivated from the terminal positive dilution (10(-6)). From lower dilution (10(-4)), a strain of Methylomonas spp. was cultivated. All the three culture-independent analyses, i.e., pmoA clone library, terminal restriction fragment length polymorphism (T-RFLP), and metagenomics approach, revealed the dominance of type I methanotrophs. Only metagenomic analysis showed significant presence of type II methanotrophs, albeit in lower proportion (37 %). All the three isolates showed relevance to the methanotrophic community as depicted by uncultured methods; however, the cultivated members might not be the most dominant ones. In conclusion, a combined cultivation and cultivation-independent strategy yielded us a broader picture of the methanotrophic community from rice rhizospheres of a flooded rice field in India.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Metano/metabolismo , Oryza/microbiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Índia , Oryza/crescimento & desenvolvimento , Filogenia , Raízes de Plantas/microbiologia , Rizosfera
8.
Mar Genomics ; 24 Pt 3: 223-4, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26055206

RESUMO

Elstera litoralis, is a Rhodospirillaceae member which was isolated from the littoral zone of Lake Constance from a stone biofilm using diatom extracellular polymeric substances (EPS) as C source. We present here the draft genome of E. litoralis which has a genome size of 3.83 Mb and 61.2% G+C content. Genome analysis indicated utilization of multiple C substrates explaining its heterotrophic lifestyle as a bacterium present in natural biofilms. Further comparative genome analysis of Elstera with other members of Rhodospirillaceae would be helpful to understand the evolutionary relationships and divergence of hydrobacteria from terrabacteria.


Assuntos
Alphaproteobacteria/genética , Genoma Bacteriano , Lagos/microbiologia , Microbiologia da Água , Biofilmes , DNA Bacteriano/genética , Alemanha
9.
Mar Genomics ; 21: 25-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25659801

RESUMO

Obligate psychrophilic, Cryobacterium sp. MLB-32, was isolated from cryoconite holes of high Arctic glaciers. Here, we report the first draft genome sequence of the putative novel species of the genus Cryobacterium, providing opportunities for biotechnological and agricultural exploitation of its genome features.


Assuntos
Bactérias/classificação , Bactérias/genética , Camada de Gelo/microbiologia , Regiões Árticas , Bactérias/isolamento & purificação , Ecossistema , Genoma Bacteriano , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...