RESUMO
Striatal projection neurons, which are classified into two groups-direct and indirect pathway neurons, play a pivotal role in our understanding of the brain's functionality. Conventional models propose that these two pathways operate independently and have contrasting functions, akin to an "accelerator" and "brake" in a vehicle. This analogy further elucidates how the depletion of dopamine neurons in Parkinson's disease can result in bradykinesia. However, the question arises: are these direct and indirect pathways truly autonomous? Despite being distinct types of neurons, their interdependence cannot be overlooked. Single-neuron tracing studies employing membrane-targeting signals have shown that the majority of direct pathway neurons terminate not only in the output nuclei, but also in the external segment of the globus pallidus (GP in rodents), a relay nucleus of the indirect pathway. Recent studies have unveiled the existence of arkypallidal neurons, which project solely to the striatum, in addition to prototypic neurons. This raises the question of which type of GP neurons receive these striatal axon collaterals. Our morphological and electrophysiological experiments showed that the striatal direct pathway neurons may affect prototypic neurons via the action of substance P on neurokinin-1 receptors. Conversely, another research group has reported that direct pathway neurons inhibit arkypallidal neurons via GABA. Regardless of the neurotransmitter involved, it can be concluded that the GP is not entirely independent of direct pathway neurons. This review article underscores the intricate interplay between different neuronal pathways and challenges the traditional understanding of their independence.
Assuntos
Corpo Estriado , Globo Pálido , Neurônios , Animais , Neurônios/metabolismo , Humanos , Vias Neurais/fisiologiaRESUMO
The brain networks responsible for adaptive behavioral changes are based on the physical connections between neurons. Light and electron microscopy have long been used to study neural projections and the physical connections between neurons. Volume electron microscopy has recently expanded its scale of analysis due to methodological advances, resulting in complete wiring maps of neurites in a large volume of brain tissues and even entire nervous systems in a growing number of species. However, structural approaches frequently suffer from inherent limitations in which elements in images are identified solely by morphological criteria. Recently, an increasing number of tools and technologies have been developed to characterize cells and cellular components in the context of molecules and gene expression. These advancements include newly developed probes for visualization in electron microscopic images as well as correlative integration methods for the same elements across multiple microscopic modalities. Such approaches advance our understanding of interactions between specific neurons and circuits and may help to elucidate novel aspects of the basal ganglia network involving dopamine neurons. These advancements are expected to reveal mechanisms for processing adaptive changes in specific neural circuits that modulate brain functions.
RESUMO
Despite widespread adoption of tissue clearing techniques in recent years, poor access to suitable light-sheet fluorescence microscopes remains a major obstacle for biomedical end-users. Here, we present descSPIM (desktop-equipped SPIM for cleared specimens), a low-cost ($20,000-50,000), low-expertise (one-day installation by a non-expert), yet practical do-it-yourself light-sheet microscope as a solution for this bottleneck. Even the most fundamental configuration of descSPIM enables multi-color imaging of whole mouse brains and a cancer cell line-derived xenograft tumor mass for the visualization of neurocircuitry, assessment of drug distribution, and pathological examination by false-colored hematoxylin and eosin staining in a three-dimensional manner. Academically open-sourced ( https://github.com/dbsb-juntendo/descSPIM ), descSPIM allows routine three-dimensional imaging of cleared samples in minutes. Thus, the dissemination of descSPIM will accelerate biomedical discoveries driven by tissue clearing technologies.
Assuntos
Encéfalo , Imageamento Tridimensional , Microscopia de Fluorescência , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Humanos , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência/instrumentação , Imageamento Tridimensional/métodos , Linhagem Celular TumoralRESUMO
Immunocytochemistry, a method of delineating the subcellular localization of target proteins, was developed from immunohistochemistry. In principle, proteins are labeled using an antigen-antibody reaction. In order to observe under an electron microscope, the reaction product must scatter the electron beam with sufficient contrast while it is necessary to have an amplifying label that can withstand the observation. We have some detailed tips on making electron microscope samples to achieve this objective, and we would be happy to help you.
Assuntos
Sistema Nervoso Central , Microscopia ImunoeletrônicaRESUMO
Recent advances in neural tracing have unveiled numerous neural circuits characterized by brain region and cell type specificity, illuminating the underpinnings of specific functions and behaviors. Dopaminergic (DA) neurons in the midbrain are highly heterogeneous in terms of gene and protein expression and axonal projections. Different cell types within the substantia nigra pars compacta (SNc) tend to project to the striatum in a cell-type-dependent manner characterized by specific topography. Given the wide and dense distribution of DA axons, coupled with a combination of synaptic and volume transmission, it remains unclear how DA release is spatially and temporally regulated, to appropriately achieve specific behaviors and functions. Our hypothesis posits that hidden rules governing synapse formation between pre-synaptic DA neuron types and striatal neuron types may modulate the effect of DA at a single-cell level. To address this conjecture, we employed adeno-associated virus serotype 1 (AAV1) to visualize the neural circuitry of DA neurons. AAV1 has emerged as a potent anatomical instrument capable of labeling and visualizing pre- and post-synaptic neurons simultaneously through anterograde trans-synaptic labeling. First, AAV1-Cre was injected into the SNc, resulting in Cre expression in both medium spiny neurons and interneurons in the striatum. Due to the potential occurrence of the retrograde transfer of AAV1, only striatal interneurons were considered for trans-synaptic or trans-neuronal labeling. Interneuron types expressing parvalbumin, choline acetyltransferase, somatostatin, or nitrogen oxide synthase exhibited Cre expression. Using a combination of AAV1-Cre and Cre-driven fluorophore expressing AAVs, striatal interneurons and the axons originating from the SNc were visualized in distinct colors. Using immunofluorescence against neurotransmitter transporters, almost all axons in the striatum visualized using this approach were confirmed to be dopaminergic. Moreover, individual DA axons established multiple appositions on the somata and proximal dendrites of interneurons. This finding suggests that irrespective of the extensive and widespread axonal arborization of DA neurons, a particular DA neuron may exert a significant influence on specific interneurons. Thus, AAV1-based labeling of the DA system can be a valuable tool to uncover the concealed rules governing these intricate relationships.
RESUMO
Diabetic cardiomyopathy has been reported to increase the risk of fatal ventricular arrhythmia. The beneficial effects of the selective sodium-glucose cotransporter-2 inhibitor have not been fully examined in the context of antiarrhythmic therapy, especially its direct cardioprotective effects despite the negligible SGLT2 expression in cardiomyocytes. We aimed to examine the antiarrhythmic effects of empagliflozin (EMPA) treatment on diabetic cardiomyocytes, with a special focus on Ca2+ handling. We conducted echocardiography and hemodynamic studies and studied electrophysiology, Ca2+ handling, and protein expression in C57BLKS/J-leprdb/db mice (db/db mice) and their nondiabetic lean heterozygous Leprdb/+ littermates (db/+ mice). Preserved systolic function with diastolic dysfunction was observed in 16-wk-old db/db mice. During arrhythmia induction, db/db mice had significantly increased premature ventricular complexes (PVCs) than controls, which was attenuated by EMPA. In protein expression analyses, calmodulin-dependent protein kinase II (CaMKII) Thr287 autophosphorylation and CaMKII-dependent RyR2 phosphorylation (S2814) were significantly increased in diabetic hearts, which were inhibited by EMPA. In addition, global O-GlcNAcylation significantly decreased with EMPA treatment. Furthermore, EMPA significantly inhibited ventricular cardiomyocyte glucose uptake. Diabetic cardiomyocytes exhibited increased spontaneous Ca2+ events and decreased sarcoplasmic reticulum (SR) Ca2+ content, along with impaired Ca2+ transient, all of which normalized with EMPA treatment. Notably, most EMPA-induced improvements in Ca2+ handling were abolished by the addition of an O-GlcNAcase (OGA) inhibitor. In conclusion, EMPA attenuated ventricular arrhythmia inducibility by normalizing the intracellular Ca2+ handling, and we speculated that this effect was, at least partly, due to the inhibition of O-GlcNAcylation via the suppression of glucose uptake into cardiomyocytes.NEW & NOTEWORTHY SGLT2is are known to improve cardiovascular outcomes regardless of the presence of diabetes and decrease traditional cardiovascular risk factors. We demonstrated, for the first time, that EMPA inhibited PVCs by normalizing Ca2+ handling in diabetic mice. Our data suggest that the effects of SGLT2is on calcium handling may occur because of suppression of O-GlcNAcylation through inhibition of glucose uptake and not because of NHE inhibition, as previously suggested.
Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Inibidores do Transportador 2 de Sódio-Glicose , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/prevenção & controle , Glucose/metabolismo , Cálcio/metabolismoRESUMO
The striatum is one of the key nuclei for adequate control of voluntary behaviors and reinforcement learning. Two striatal projection neuron types, expressing either dopamine receptor D1 (D1R) or dopamine receptor D2 (D2R) constitute two independent output routes: the direct or indirect pathways, respectively. These pathways co-work in balance to achieve coordinated behavior. Two projection neuron types are equivalently intermingled in most striatal space. However, recent studies revealed two atypical zones in the caudal striatum: the zone in which D1R-neurons are the minor population (D1R-poor zone) and that in which D2R-neurons are the minority (D2R-poor zone). It remains obscure as to whether these imbalanced zones have similar properties on axonal projections and electrophysiology compared to other striatal regions. Based on morphological experiments in mice using immunofluorescence, in situ hybridization, and neural tracing, here, we revealed that the poor zones densely projected to the globus pallidus and substantia nigra pars lateralis, with a few collaterals in substantia nigra pars reticulata and compacta. Similar to that in other striatal regions, D1R-neurons were the direct pathway neurons. We also showed that the membrane properties of projection neurons in the poor zones were largely similar to those in the conventional striatum using in vitro electrophysiological recording. In addition, the poor zones existed irrespective of the age or sex of mice. We also identified the poor zones in the common marmoset as well as other rodents. These results suggest that the poor zones in the caudal striatum follow the conventional projection patterns irrespective of the imbalanced distribution of projection neurons. The poor zones could be an innate structure and common in mammals. The unique striatal zones possessing highly restricted projections could relate to functions different from those of motor-related striatum.
RESUMO
Classically, the cerebellum has been thought to play a significant role in motor coordination. However, a growing body of evidence for novel neural connections between the cerebellum and various brain regions indicates that the cerebellum also contributes to other brain functions implicated in reward, language, and social behavior. Cerebellar Purkinje cells (PCs) make inhibitory GABAergic synapses with their target neurons: other PCs and Lugaro/globular cells via PC axon collaterals, and neurons in the deep cerebellar nuclei (DCN) via PC primary axons. PC-Lugaro/globular cell connections form a cerebellar cortical microcircuit, which is driven by serotonin and noradrenaline. PCs' primary outputs control not only firing but also synaptic plasticity of DCN neurons following the integration of excitatory and inhibitory inputs in the cerebellar cortex. Thus, strong PC-mediated inhibition is involved in cerebellar functions as a key regulator of cerebellar neural networks. In this review, we focus on physiological characteristics of GABAergic transmission from PCs. First, we introduce monoaminergic modulation of GABAergic transmission at synapses of PC-Lugaro/globular cell as well as PC-large glutamatergic DCN neuron, and a Lugaro/globular cell-incorporated microcircuit. Second, we review the physiological roles of perineuronal nets (PNNs), which are organized components of the extracellular matrix and enwrap the cell bodies and proximal processes, in GABA release from PCs to large glutamatergic DCN neurons and in cerebellar motor learning. Recent evidence suggests that alterations in PNN density in the DCN can regulate cerebellar functions.
Assuntos
Cerebelo , Células de Purkinje , Núcleos Cerebelares , Matriz Extracelular , Plasticidade Neuronal , NeurôniosRESUMO
Retrieval deficit of long-term memory is a cardinal symptom of dementia and has been proposed to associate with abnormalities in the central cholinergic system. Difficulty in the retrieval of memory is experienced by healthy individuals and not limited to patients with neurological disorders that result in forgetfulness. The difficulty of retrieving memories is associated with various factors, such as how often the event was experienced or remembered, but it is unclear how the cholinergic system plays a role in the retrieval of memory formed by a daily routine (accumulated experience). To investigate this point, we trained rats moderately (for a week) or extensively (for a month) to detect a visual cue in a two-alternative forced-choice task. First, we confirmed the well-established memory in the extensively trained group was more resistant to the retrieval problem than recently acquired memory in the moderately trained group. Next, we tested the effect of a cholinesterase inhibitor, donepezil, on the retrieval of memory after a long no-task period in extensively trained rats. Pre-administration of donepezil improved performance and reduced the latency of task initiation compared to the saline-treated group. Finally, we lesioned cholinergic neurons of the nucleus basalis magnocellularis (NBM), which project to the entire neocortex, by injecting the cholinergic toxin 192 IgG-saporin. NBM-lesioned rats showed severely impaired task initiation and performance. These abilities recovered as the trials progressed, though they never reached the level observed in rats with intact NBM. These results suggest that acetylcholine released from the NBM contributes to the retrieval of well-established memory developed by a daily routine.
Assuntos
Acetilcolina/metabolismo , Núcleo Basal de Meynert/fisiologia , Neurônios Colinérgicos/fisiologia , Rememoração Mental/fisiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Anticorpos Monoclonais/farmacologia , Núcleo Basal de Meynert/efeitos dos fármacos , Núcleo Basal de Meynert/metabolismo , Colinérgicos/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Inibidores da Colinesterase/farmacologia , Donepezila/farmacologia , Rememoração Mental/efeitos dos fármacos , Neocórtex/efeitos dos fármacos , Neocórtex/metabolismo , Neocórtex/fisiologia , Ratos , Saporinas/farmacologiaRESUMO
The basal ganglia are critical for the control of motor behaviors and for reinforcement learning. Here, we demonstrate in rats that primary and secondary motor areas (M1 and M2) make functional synaptic connections in the globus pallidus (GP), not usually thought of as an input site of the basal ganglia. Morphological observation revealed that the density of axonal boutons from motor cortices in the GP was 47% and 78% of that in the subthalamic nucleus (STN) from M1 and M2, respectively. Cortical excitation of GP neurons was comparable to that of STN neurons in slice preparations. FoxP2-expressing arkypallidal neurons were preferentially innervated by the motor cortex. The connection probability of cortico-pallidal innervation was higher for M2 than M1. These results suggest that cortico-pallidal innervation is an additional excitatory input to the basal ganglia, and that it can affect behaviors via the cortex-basal ganglia-thalamus motor loop.
Assuntos
Globo Pálido/anatomia & histologia , Globo Pálido/fisiologia , Córtex Motor/anatomia & histologia , Córtex Motor/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Animais , Conectoma , RatosRESUMO
The neostriatum has a mosaic organization consisting of striosome and matrix compartments. It receives glutamatergic excitatory afferents from the cerebral cortex and thalamus. Recent behavioral studies in rats revealed a selectively active medial prefronto-striosomal circuit during cost-benefit decision-making. However, clarifying the input/output organization of striatal compartments has been difficult because of its complex structure. We recently demonstrated that the source of thalamostriatal projections are highly organized in striatal compartments. This finding indicated that the functional properties of striatal compartments are influenced by their cortical and thalamic afferents, presumably with different time latencies. In addition, these afferents likely support the unique dynamics of striosome and matrix compartments. In this manuscript, we review the anatomy of basal ganglia networks with regard to striosome/matrix structure. We place specific focus on thalamostriatal projections at the population and single neuron level.
Assuntos
Gânglios da Base/fisiologia , Córtex Cerebral/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Animais , Gânglios da Base/citologia , Córtex Cerebral/citologia , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Humanos , Rede Nervosa/citologia , Neurônios/citologia , Tálamo/citologiaRESUMO
The supramammillary nucleus (SuM) of the hypothalamus projects to the dentate gyrus (DG) and the CA2 region of the hippocampus. Although the SuM-to-hippocampus circuits have been implicated in spatial and emotional memory formation, little is known about precise neural connections between the SuM and hippocampus. Here, we report that axons of SuM neurons make monosynaptic connections to granule cells (GCs) and GABAergic interneurons, but not to hilar mossy cells, in the DG and co-release glutamate and γ-aminobutyric acid (GABA) at these synapses. Although inputs from the SuM can excite some interneurons, the inputs alone fail to generate spikes in GCs. However, despite the insufficient excitatory drive and GABAergic co-transmission, SuM inputs have net excitatory effects on GCs and can potentiate GC firing when temporally associated with perforant path inputs. Our results indicate that the SuM influences DG information processing by modulating GC outputs.
Assuntos
Vias Aferentes/fisiologia , Giro Denteado/citologia , Giro Denteado/metabolismo , Ácido Glutâmico/metabolismo , Hipotálamo Posterior/fisiologia , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/fisiologia , Animais , Interneurônios/fisiologia , Camundongos Endogâmicos C57BL , Fibras Musgosas Hipocampais/fisiologia , Optogenética , Via Perfurante/fisiologia , Sinapses/metabolismoRESUMO
Perineuronal nets (PNNs), composed mainly of chondroitin sulfate proteoglycans, are the extracellular matrix that surrounds cell bodies, proximal dendrites, and axon initial segments of adult CNS neurons. PNNs are known to regulate neuronal plasticity, although their physiological roles in cerebellar functions have yet to be elucidated. Here, we investigated the contribution of PNNs to GABAergic transmission from cerebellar Purkinje cells (PCs) to large glutamatergic neurons in the deep cerebellar nuclei (DCN) in male mice by recording IPSCs from cerebellar slices, in which PNNs were depleted with chondroitinase ABC (ChABC). We found that PNN depletion increased the amplitude of evoked IPSCs and enhanced the paired-pulse depression. ChABC treatment also facilitated spontaneous IPSCs and increased the miniature IPSC frequency without changing not only the amplitude but also the density of PC terminals, suggesting that PNN depletion enhances presynaptic GABA release. We also demonstrated that the enhanced GABAergic transmission facilitated rebound firing in large glutamatergic DCN neurons, which is expected to result in the efficient induction of synaptic plasticity at synapses onto DCN neurons. Furthermore, we tested whether PNN depletion affects cerebellar motor learning. Mice having received the enzyme into the interpositus nuclei, which are responsible for delay eyeblink conditioning, exhibited the conditioned response at a significantly higher rate than control mice. Therefore, our results suggest that PNNs of the DCN suppress GABAergic transmission between PCs and large glutamatergic DCN neurons and restrict synaptic plasticity associated with motor learning in the adult cerebellum.SIGNIFICANCE STATEMENT Perineuronal nets (PNNs) are one of the extracellular matrices of adult CNS neurons and implicated in regulating various brain functions. Here we found that enzymatic PNN depletion in the mouse deep cerebellar nuclei (DCN) reduced the paired-pulse ratio of IPSCs and increased the miniature IPSC frequency without changing the amplitude, suggesting that PNN depletion enhances GABA release from the presynaptic Purkinje cell (PC) terminals. Mice having received the enzyme in the interpositus nuclei exhibited a higher conditioned response rate in delay eyeblink conditioning than control mice. These results suggest that PNNs regulate presynaptic functions of PC terminals in the DCN and functional plasticity of synapses on DCN neurons, which influences the flexibility of adult cerebellar functions.
Assuntos
Núcleos Cerebelares/fisiologia , Matriz Extracelular/fisiologia , Plasticidade Neuronal/fisiologia , Células de Purkinje/fisiologia , Transmissão Sináptica/fisiologia , Animais , Piscadela/fisiologia , Condicionamento Clássico/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Aprendizagem/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
In rodents, the dorsolateral striatum regulates voluntary movement by integrating excitatory inputs from the motor-related cerebral cortex and thalamus to produce contingent inhibitory output to other basal ganglia nuclei. Striatal parvalbumin (PV)-producing interneurons receiving this excitatory input then inhibit medium spiny neurons (MSNs) and modify their outputs. To understand basal ganglia function in motor control, it is important to reveal the precise synaptic organization of motor-related cortical and thalamic inputs to striatal PV interneurons. To examine which domains of the PV neurons receive these excitatory inputs, we used male bacterial artificial chromosome transgenic mice expressing somatodendritic membrane-targeted green fluorescent protein in PV neurons. An anterograde tracing study with the adeno-associated virus vector combined with immunodetection of pre- and postsynaptic markers visualized the distribution of the excitatory appositions on PV dendrites. Statistical analysis revealed that the density of thalamostriatal appositions along the dendrites was significantly higher on the proximal than distal dendrites. In contrast, there was no positional preference in the density of appositions from axons of the dorsofrontal cortex. Population observations of thalamostriatal and corticostriatal appositions by immunohistochemistry for pathway-specific vesicular glutamate transporters confirmed that thalamic inputs preferentially, and cortical ones less preferentially, made apposition on proximal dendrites of PV neurons. This axodendritic organization suggests that PV neurons produce fast and reliable inhibition of MSNs in response to thalamic inputs and process excitatory inputs from motor cortices locally and plastically, possibly together with other GABAergic and dopaminergic dendritic inputs, to modulate MSN inhibition.
Assuntos
Corpo Estriado/fisiologia , Dendritos/fisiologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Parvalbuminas/biossíntese , Tálamo/fisiologia , Animais , Axônios/metabolismo , Córtex Cerebral/metabolismo , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Dendritos/metabolismo , Ácido Glutâmico , Masculino , Camundongos , Camundongos Transgênicos , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Tálamo/metabolismoRESUMO
Previous studies have suggested that the neurokinin-1 receptor (NK-1R) expressing neurons in the globus pallidus (GP) receive substance P (SP), presumably released by axon collaterals of striatal direct neurons. However, the effect of SP on the GP remains unclear. In this study, we identified that the SP-responsive cells comprise a highly specific cell type in the GP with regard to immunofluorescence, electrophysiology, and projection properties. Morphologically, NK-1R-immunoreactive neurons occasionally co-expressed parvalbumin (PV) and/or Lim-homeobox 6 (Lhx6), but not Forkhead box protein P2 (FoxP2), which is mainly expressed by arkypallidal neurons. Retrograde tracing experiments also showed that some of GP neurons projecting to the subthalamic nucleus (namely prototypic neurons) expressed NK-1R as well as Lhx6 and/or PV, but not FoxP2. In vitro electrophysiological study revealed that, among 48 GP neurons, the SP agonist induced inward current in 21 neurons. The response was prevented by bath application of the NK-1R antagonist. Based on the firing properties, 92 recorded GP neurons were classified into three distinct types, i.e., CL1, 2, and 3. Interestingly, all the SP-responsive neurons were found to be in CL2 and CL3 types, but not in CL1. Moreover, active and passive membrane properties of the neurons in those clusters and immunofluorescent identification suggested that CL1 and CL2/3 could be considered as arkypallidal and prototypic neurons, respectively. Therefore, SP-responsive neurons were one of the populations of prototypic neurons based on both anatomical and electrophysiological results. Altogether, the striatal direct pathway neurons could affect the indirect pathway in the way of prototypic neurons, via the action of SP to NK-1R.
Assuntos
Globo Pálido/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Substância P/farmacologia , Potenciais de Ação/efeitos dos fármacos , Fatores Etários , Animais , Animais Recém-Nascidos , Toxina da Cólera/metabolismo , Colina O-Acetiltransferase/metabolismo , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/genética , Feminino , Globo Pálido/crescimento & desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Neurotransmissores/farmacologia , Parvalbuminas/genética , Parvalbuminas/metabolismo , Estimulação Física , Receptores da Neurocinina-1/metabolismoRESUMO
In the present study, we generated a novel parvalbumin (PV)-Cre rat model and conducted detailed morphological and electrophysiological investigations of axons from PV neurons in globus pallidus (GP). The GP is considered as a relay nucleus in the indirect pathway of the basal ganglia (BG). Previous studies have used molecular profiling and projection patterns to demonstrate cellular heterogeneity in the GP; for example, PV-expressing neurons are known to comprise approximately 50% of GP neurons and represent majority of prototypic neurons that project to the subthalamic nucleus and/or output nuclei of BG, entopeduncular nucleus and substantia nigra (SN). The present study aimed to identify the characteristic projection patterns of PV neurons in the GP (PV-GP neurons) and determine whether these neurons target dopaminergic or GABAergic neurons in SN pars compacta (SNc) or reticulata (SNr), respectively. We initially found that (1) 57% of PV neurons co-expressed Lim-homeobox 6, (2) the PV-GP terminals were preferentially distributed in the ventral part of dorsal tier of SNc, (3) PV-GP neurons formed basket-like appositions with the somata of tyrosine hydroxylase, PV, calretinin and cholecystokinin immunoreactive neurons in the SN, and (4) in vitro whole-cell recording during optogenetic photo-stimulation of PV-GP terminals in SNc demonstrated that PV-GP neurons strongly inhibited dopamine neurons via GABAA receptors. These results suggest that dopamine neurons receive direct focal inputs from PV-GP prototypic neurons. The identification of high-contrast inhibitory systems on dopamine neurons might represent a key step toward understanding the BG function.
Assuntos
Gânglios da Base/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Substância Negra/metabolismo , Núcleo Subtalâmico/metabolismo , Animais , Axônios/metabolismo , Globo Pálido/fisiologia , Parvalbuminas/genética , Parvalbuminas/metabolismo , Ratos Transgênicos , Ácido gama-Aminobutírico/metabolismoRESUMO
To uncover the functional topography of layer 6 neurons, optical imaging was combined with three-dimensional neuronal reconstruction. Apical dendrite morphology of 23 neurons revealed three distinct types. Type Aa possessed a short apical dendrite with many oblique branches, Type Ab was characterized by a short and less branched apical dendrite, whereas Type B had a long apical dendrite with tufts in layer 2. Each type had a similar number of boutons, yet their spatial distribution differed from each other in both radial and horizontal extent. Boutons of Type Aa and Ab were almost restricted to the column of the parent soma with a laminar preference to layer 4 and 5/6, respectively. Only Type B contributed to long horizontal connections (up to 1.5 mm) mostly in deep layers. For all types, bouton distribution on orientation map showed an almost equal occurrence at iso- (52.6 ± 18.8 %) and non-iso-orientation (oblique, 27.7 ± 14.9 % and cross-orientation 19.7 ± 10.9 %) sites. Spatial convergence of axons of nearby layer 6 spiny neurons depended on soma separation of the parent cells, but only weakly on orientation preference, contrary to orientation dependence of converging axons of layer 4 spiny cells. The results show that layer 6 connections have only a weak dependence on orientation preference compared with those of layers 2/3 (Buzás et al., J Comp Neurol 499:861-881, 2006) and 4 (Karube and Kisvárday, Cereb Cortex 21:1443-1458, 2011).
Assuntos
Axônios/fisiologia , Mapeamento Encefálico , Dendritos/fisiologia , Neurônios/citologia , Orientação/fisiologia , Córtex Visual/citologia , Análise de Variância , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Gatos , Dendritos/ultraestrutura , Dextranos/metabolismo , Processamento de Imagem Assistida por Computador , Neurônios/classificação , Proteína Vesicular 2 de Transporte de Glutamato/metabolismoRESUMO
The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their inhibitory postsynaptic potential (IPSP) size is not uniform. Thus, cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.
Assuntos
Córtex Cerebral/citologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Humanos , Modelos Biológicos , Ácido gama-Aminobutírico/metabolismoRESUMO
The authors have reviewed recent research advances in basal ganglia circuitry and function, as well as in related disorders from multidisciplinary perspectives derived from the results of morphological, electrophysiological, behavioral, biochemical and molecular biological studies. Based on their expertise in their respective fields, as denoted in the text, the authors discuss five distinct research topics, as follows: (1) area-specific dopamine receptor expression of astrocytes in basal ganglia, (2) the role of physiologically released dopamine in the striatum, (3) control of behavioral flexibility by striatal cholinergic interneurons, (4) regulation of phosphorylation states of DARPP-32 by protein phosphatases and (5) physiological perspective on deep brain stimulation with optogenetics and closed-loop control for ameliorating parkinsonism.
Assuntos
Doenças dos Gânglios da Base/metabolismo , Gânglios da Base/citologia , Gânglios da Base/fisiologia , Neurônios/fisiologia , Neurotransmissores/fisiologia , Receptores de Neurotransmissores/fisiologia , Animais , HumanosRESUMO
Inhibitory interneurons target precise membrane regions on pyramidal cells, but differences in their functional effects on somata, dendrites and spines remain unclear. We analyzed inhibitory synaptic events induced by cortical, fast-spiking (FS) basket cells which innervate dendritic shafts and spines as well as pyramidal cell somata. Serial electron micrograph (EMg) reconstructions showed that somatic synapses were larger than dendritic contacts. Simulations with precise anatomical and physiological data reveal functional differences between different innervation styles. FS cell soma-targeting synapses initiate a strong, global inhibition, those on shafts inhibit more restricted dendritic zones, while synapses on spines may mediate a strictly local veto. Thus, FS cell synapses of different sizes and sites provide functionally diverse forms of pyramidal cell inhibition.