Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35807969

RESUMO

All-inorganic lead halide perovskite nanocrystals have great potential in optoelectronics and photovoltaics. However, their biological applications have not been explored much owing to their poor stability and shallow penetration depth of ultraviolet (UV) excitation light into tissues. Interestingly, the combination of all-inorganic halide perovskite nanocrystals (IHP NCs) with nanoparticles consisting of lanthanide-doped matrix (Ln NPs, such as NaYF4:Yb,Er NPs) is stable, near-infrared (NIR) excitable and emission tuneable (up-shifting emission), all of them desirable properties for biological applications. In addition, luminescence in inorganic perovskite nanomaterials has recently been sensitized via lanthanide doping. In this review, we discuss the progress of various Ln-doped all-inorganic halide perovskites (LnIHP). The unique properties of nanoheterostructures based on the interaction between IHP NCs and Ln NPs as well as those of LnIHP NCs are also detailed. Moreover, a systematic discussion of basic principles and mechanisms as well as of the recent advancements in bio-imaging based on these materials are presented. Finally, the challenges and future perspectives of bio-imaging based on NIR-triggered sensitized luminescence of IHP NCs are discussed.

2.
Data Brief ; 9: 524-529, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27747267

RESUMO

The photo-reversible [4πs+4πs] cycloaddition reaction of pendant anthracene moieties represents a convenient strategy to impart wavelength dependent properties into hydrogenated carboxylated nitrile butadiene rubber (HXNBR) networks. The present article provides the 1H NMR data on the reaction kinetics of the side chain functionalization of HXNBR. 2-(Anthracene-9-yl)oxirane with reactive epoxy groups is covalently attached to the polymer side chain of HXNBR via ring opening reaction between the epoxy and the carboxylic groups. Along with the identification, 1H NMR data on the quantification of the attached functional groups are shown in dependence on reaction time and concentration of 2-(anthracene-9-yl)oxirane. Changes in the modification yield are reflected in the mechanical properties and DMA data of photo-responsive elastomers are illustrated in dependence on the number of attached anthracene groups. DMA curves over repeated cycles of UV induced crosslinking (λ>300 nm) and UV induced cleavage (λ=254 nm) are further depicted, demonstrating the photo-reversibility of the thermo-mechanical properties. Interpretation and discussion of the data are provided in "Design and application of photo-reversible elastomer networks by using the [4πs+4πs] cycloaddition reaction of pendant anthracene groups" (Manhart et al., 2016) [1].

3.
Macromol Rapid Commun ; 37(20): 1701-1706, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27573508

RESUMO

This work deals with the in-depth investigation of thiol-yne based network formation and its effect on thermomechanical properties and impact strength. The results show that the bifunctional alkyne monomer di(but-1-yne-4-yl)carbonate (DBC) provides significantly lower cytotoxicity than the comparable acrylate, 1,4-butanediol diacrylate (BDA). Real-time near infrared photorheology measurements reveal that gel formation is shifted to higher conversions for DBC/thiol resins leading to lower shrinkage stress and higher overall monomer conversion than BDA. Glass transition temperature (Tg ), shrinkage stress, as well as network density determined by double quantum solid state NMR, increase proportionally with the thiol functionality. Most importantly, highly cross-linked DBC/dipentaerythritol hexa(3-mercaptopropionate) networks (Tg ≈ 61 °C) provide a 5.3 times higher impact strength than BDA, which is explained by the unique network homogeneity of thiol-yne photopolymers.


Assuntos
Alcinos/química , Materiais Biocompatíveis/química , Polímeros/síntese química , Compostos de Sulfidrila/química , Alcinos/farmacologia , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Estrutura Molecular , Processos Fotoquímicos , Polímeros/química , Polímeros/farmacologia , Compostos de Sulfidrila/farmacologia , Temperatura
4.
BMC Genomics ; 12: 470, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21955929

RESUMO

BACKGROUND: Evolution of the Brassica species has been recursively affected by polyploidy events, and comparison to their relative, Arabidopsis thaliana, provides means to explore their genomic complexity. RESULTS: A genome-wide physical map of a rapid-cycling strain of B. oleracea was constructed by integrating high-information-content fingerprinting (HICF) of Bacterial Artificial Chromosome (BAC) clones with hybridization to sequence-tagged probes. Using 2907 contigs of two or more BACs, we performed several lines of comparative genomic analysis. Interspecific DNA synteny is much better preserved in euchromatin than heterochromatin, showing the qualitative difference in evolution of these respective genomic domains. About 67% of contigs can be aligned to the Arabidopsis genome, with 96.5% corresponding to euchromatic regions, and 3.5% (shown to contain repetitive sequences) to pericentromeric regions. Overgo probe hybridization data showed that contigs aligned to Arabidopsis euchromatin contain ~80% of low-copy-number genes, while genes with high copy number are much more frequently associated with pericentromeric regions. We identified 39 interchromosomal breakpoints during the diversification of B. oleracea and Arabidopsis thaliana, a relatively high level of genomic change since their divergence. Comparison of the B. oleracea physical map with Arabidopsis and other available eudicot genomes showed appreciable 'shadowing' produced by more ancient polyploidies, resulting in a web of relatedness among contigs which increased genomic complexity. CONCLUSIONS: A high-resolution genetically-anchored physical map sheds light on Brassica genome organization and advances positional cloning of specific genes, and may help to validate genome sequence assembly and alignment to chromosomes.All the physical mapping data is freely shared at a WebFPC site (http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/; Temporarily password-protected: account: pgml; password: 123qwe123.


Assuntos
Brassica/genética , Mapeamento de Sequências Contíguas , Evolução Molecular , Genoma de Planta , Arabidopsis/genética , Cromossomos Artificiais Bacterianos , Hibridização Genômica Comparativa , DNA de Plantas/genética , Eucromatina/genética , Biblioteca Genômica , Heterocromatina/genética , Análise de Sequência de DNA
5.
BMC Genomics ; 11: 395, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20569427

RESUMO

BACKGROUND: Genetically anchored physical maps of large eukaryotic genomes have proven useful both for their intrinsic merit and as an adjunct to genome sequencing. Cultivated tetraploid cottons, Gossypium hirsutum and G. barbadense, share a common ancestor formed by a merger of the A and D genomes about 1-2 million years ago. Toward the long-term goal of characterizing the spectrum of diversity among cotton genomes, the worldwide cotton community has prioritized the D genome progenitor Gossypium raimondii for complete sequencing. RESULTS: A whole genome physical map of G. raimondii, the putative D genome ancestral species of tetraploid cottons was assembled, integrating genetically-anchored overgo hybridization probes, agarose based fingerprints and 'high information content fingerprinting' (HICF). A total of 13,662 BAC-end sequences and 2,828 DNA probes were used in genetically anchoring 1585 contigs to a cotton consensus genetic map, and 370 and 438 contigs, respectively to Arabidopsis thaliana (AT) and Vitis vinifera (VV) whole genome sequences. CONCLUSION: Several lines of evidence suggest that the G. raimondii genome is comprised of two qualitatively different components. Much of the gene rich component is aligned to the Arabidopsis and Vitis vinifera genomes and shows promise for utilizing translational genomic approaches in understanding this important genome and its resident genes. The integrated genetic-physical map is of value both in assembling and validating a planned reference sequence.


Assuntos
Genoma de Planta/genética , Gossypium/genética , Mapeamento Físico do Cromossomo/métodos , Arabidopsis/genética , Cloroplastos/genética , Cromossomos Artificiais Bacterianos/genética , Sequência Consenso , Mapeamento de Sequências Contíguas , Impressões Digitais de DNA , Evolução Molecular , Duplicação Gênica , Genes de Plantas/genética , Loci Gênicos/genética , Marcadores Genéticos/genética , Gossypium/citologia , Hibridização de Ácido Nucleico , Biossíntese de Proteínas , Sequências Repetitivas de Ácido Nucleico , Vitis/genética
6.
Proc Natl Acad Sci U S A ; 102(37): 13206-11, 2005 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-16141333

RESUMO

Nearly finished sequences for model organisms provide a foundation from which to explore genomic diversity among other taxonomic groups. We explore genome-wide microsynteny patterns between the rice sequence and two sorghum physical maps that integrate genetic markers, bacterial artificial chromosome (BAC) fingerprints, and BAC hybridization data. The sorghum maps largely tile a genomic component containing 41% of BACs but 80% of single-copy genes that shows conserved microsynteny with rice and partially tile a nonsyntenic component containing 46% of BACs but only 13% of single-copy genes. The remaining BACs are centromeric (4%) or unassigned (8%). The two genomic components correspond to cytologically discernible "euchromatin" and "heterochromatin." Gene and repetitive DNA distributions support this classification. Greater microcolinearity in recombinogenic (euchromatic) than nonrecombinogenic (heterochromatic) regions is consistent with the hypothesis that genomic rearrangements are usually deleterious, thus more likely to persist in nonrecombinogenic regions by virtue of Muller's ratchet. Interchromosomal centromeric rearrangements may have fostered diploidization of a polyploid cereal progenitor. Model plant sequences better guide studies of related genomes in recombinogenic than nonrecombinogenic regions. Bridging of 35 physical gaps in the rice sequence by sorghum BAC contigs illustrates reciprocal benefits of comparative approaches that extend at least across the cereals and perhaps beyond.


Assuntos
Estruturas Cromossômicas , Mapeamento Físico do Cromossomo/métodos , Poaceae/genética , Recombinação Genética , Sintenia , Sequência de Bases , Eucromatina , Genoma de Planta , Heterocromatina , Dados de Sequência Molecular , Oryza/genética , Sorghum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...