Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Evol Appl ; 17(6): e13728, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38884021

RESUMO

Given the multitude of challenges Earth is facing, sustainability science is of key importance to our continued existence. Evolution is the fundamental biological process underlying the origin of all biodiversity. This phylogenetic diversity fosters the resilience of ecosystems to environmental change, and provides numerous resources to society, and options for the future. Genetic diversity within species is also key to the ability of populations to evolve and adapt to environmental change. Yet, the value of evolutionary processes and the consequences of their impairment have not generally been considered in sustainability research. We argue that biological evolution is important for sustainability and that the concepts, theory, data, and methodological approaches used in evolutionary biology can, in crucial ways, contribute to achieving the UN Sustainable Development Goals (SDGs). We discuss how evolutionary principles are relevant to understanding, maintaining, and improving Nature Contributions to People (NCP) and how they contribute to the SDGs. We highlight specific applications of evolution, evolutionary theory, and evolutionary biology's diverse toolbox, grouped into four major routes through which evolution and evolutionary insights can impact sustainability. We argue that information on both within-species evolutionary potential and among-species phylogenetic diversity is necessary to predict population, community, and ecosystem responses to global change and to make informed decisions on sustainable production, health, and well-being. We provide examples of how evolutionary insights and the tools developed by evolutionary biology can not only inspire and enhance progress on the trajectory to sustainability, but also highlight some obstacles that hitherto seem to have impeded an efficient uptake of evolutionary insights in sustainability research and actions to sustain SDGs. We call for enhanced collaboration between sustainability science and evolutionary biology to understand how integrating these disciplines can help achieve the sustainable future envisioned by the UN SDGs.

2.
PLoS One ; 19(5): e0300397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758922

RESUMO

Classroom and staffroom floor swabs across six elementary schools in Ottawa, Canada were tested for SARS-CoV-2. Environmental test positivity did not correlate with student grade groups, school-level absenteeism, pediatric COVID-19-related hospitalizations, or community SARS-CoV-2 wastewater levels. Schools in neighbourhoods with historically elevated COVID-19 burden showed a negative but non-significant association with lower swab positivity.


Assuntos
COVID-19 , SARS-CoV-2 , Instituições Acadêmicas , Humanos , COVID-19/epidemiologia , COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Estudos Prospectivos , Canadá/epidemiologia , Criança , Ambiente Construído , Masculino , Feminino , Ontário/epidemiologia
3.
Mol Biol Evol ; 41(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38709811

RESUMO

The evolution of antimicrobial resistance (AMR) in bacteria is a major public health concern, and antibiotic restriction is often implemented to reduce the spread of resistance. These measures rely on the existence of deleterious fitness effects (i.e. costs) imposed by AMR mutations during growth in the absence of antibiotics. According to this assumption, resistant strains will be outcompeted by susceptible strains that do not pay the cost during the period of restriction. The fitness effects of AMR mutations are generally studied in laboratory reference strains grown in standard growth environments; however, the genetic and environmental context can influence the magnitude and direction of a mutation's fitness effects. In this study, we measure how three sources of variation impact the fitness effects of Escherichia coli AMR mutations: the type of resistance mutation, the genetic background of the host, and the growth environment. We demonstrate that while AMR mutations are generally costly in antibiotic-free environments, their fitness effects vary widely and depend on complex interactions between the mutation, genetic background, and environment. We test the ability of the Rough Mount Fuji fitness landscape model to reproduce the empirical data in simulation. We identify model parameters that reasonably capture the variation in fitness effects due to genetic variation. However, the model fails to accommodate the observed variation when considering multiple growth environments. Overall, this study reveals a wealth of variation in the fitness effects of resistance mutations owing to genetic background and environmental conditions, which will ultimately impact their persistence in natural populations.


Assuntos
Farmacorresistência Bacteriana , Escherichia coli , Aptidão Genética , Mutação , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Modelos Genéticos , Meio Ambiente
5.
Evolution ; 78(3): 566-578, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37862583

RESUMO

Genetic background has the potential to influence both the tempo and trajectory of adaptive change: Different genotypes of a given species may adopt varied solutions to the same environmental challenge, or they may approach the same solution at different rates. Laboratory selection has been widely used to experimentally examine the evolutionary consequences of variation in genetic background, although largely using genotypes differing by only a few mutations. Here, we leverage natural variation in the bacterium Pseudomonas aeruginosa to investigate whether different adaptive solutions are accessible from distant points of departure on an adaptive landscape. We evolved 17 diverse genotypes in a laboratory medium that partially mimics the lung sputum of cystic fibrosis patients, and we measured changes in 10 phenotypes as well as in fitness. Using phylogenetically informed analyses, we found that genetic background impacted the tempo, but not the trajectory, of phenotypic evolution: Different starting genotypes converged toward similar phenotypes, but at varying rates. Our findings add to a growing body of evidence supporting widespread diminishing return epistasis during adaptation. The importance of genetic background toward the trajectory of adaptation remains inconsistent across experimental systems and conditions.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Fibrose Cística/genética , Pseudomonas aeruginosa/genética , Mutação , Fenótipo , Infecções por Pseudomonas/microbiologia , Patrimônio Genético
6.
Evol Lett ; 7(6): 447-456, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045727

RESUMO

Whether and how the spatial arrangement of a population influences adaptive evolution has puzzled evolutionary biologists. Theoretical models make conflicting predictions about the probability that a beneficial mutation will become fixed in a population for certain topologies like stars, in which "leaf" populations are connected through a central "hub." To date, these predictions have not been evaluated under realistic experimental conditions. Here, we test the prediction that topology can change the dynamics of fixation both in vitro and in silico by tracking the frequency of a beneficial mutant under positive selection as it spreads through networks of different topologies. Our results provide empirical support that meta-population topology can increase the likelihood that a beneficial mutation spreads, broaden the conditions under which this phenomenon is thought to occur, and points the way toward using network topology to amplify the effects of weakly favored mutations under directed evolution in industrial applications.

7.
Am Nat ; 202(6): 800-817, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033179

RESUMO

AbstractEcological interactions are crucial to the structure and function of biological communities, but we lack a causal understanding of the forces shaping their emergence during evolutionary diversification. Here we provide a conceptual framework linking different modes of diversification (e.g., ecological diversification), which depend on environmental characteristics, to the evolution of different forms of ecological interactions (e.g., resource partitioning) in asexual lineages. We tested the framework by examining the net interactions in communities of Pseudomonas aeruginosa produced via experimental evolution in nutritionally simple (SIM) or complex (COM) environments by contrasting the productivity and competitive fitness of whole evolved communities relative to their component isolates. As expected, we found that nutritional complexity drove the evolution of communities with net positive interactions whereas SIM communities had similar performance as their component isolates. A follow-up experiment revealed that high fitness in two COM communities was driven by rare variants (frequency <0.1%) that antagonized PA14, the ancestral strain and common competitor used in fitness assays. Our study suggests that the evolution of de novo ecological interactions in asexual lineages is predictable at a broad scale from environmental conditions. Further, our work demonstrates that rare variants can disproportionately impact the function of relatively simple microbial communities.


Assuntos
Biota , Pseudomonas aeruginosa , Evolução Biológica
8.
PLoS One ; 18(3): e0282489, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36913370

RESUMO

BACKGROUND: SARS-CoV-2 can be detected from the built environment (e.g., floors), but it is unknown how the viral burden surrounding an infected patient changes over space and time. Characterizing these data can help advance our understanding and interpretation of surface swabs from the built environment. METHODS: We conducted a prospective study at two hospitals in Ontario, Canada between January 19, 2022 and February 11, 2022. We performed serial floor sampling for SARS-CoV-2 in rooms of patients newly hospitalized with COVID-19 in the past 48 hours. We sampled the floor twice daily until the occupant moved to another room, was discharged, or 96 hours had elapsed. Floor sampling locations included 1 metre (m) from the hospital bed, 2 m from the hospital bed, and at the room's threshold to the hallway (typically 3 to 5 m from the hospital bed). The samples were analyzed for the presence of SARS-CoV-2 using quantitative reverse transcriptase polymerase chain reaction (RT-qPCR). We calculated the sensitivity of detecting SARS-CoV-2 in a patient with COVID-19, and we evaluated how the percentage of positive swabs and the cycle threshold of the swabs changed over time. We also compared the cycle threshold between the two hospitals. RESULTS: Over the 6-week study period we collected 164 floor swabs from the rooms of 13 patients. The overall percentage of swabs positive for SARS-CoV-2 was 93% and the median cycle threshold was 33.4 (interquartile range [IQR]: 30.8, 37.2). On day 0 of swabbing the percentage of swabs positive for SARS-CoV-2 was 88% and the median cycle threshold was 33.6 (IQR: 31.8, 38.2) compared to swabs performed on day 2 or later where the percentage of swabs positive for SARS-CoV-2 was 98% and the cycle threshold was 33.2 (IQR: 30.6, 35.6). We found that viral detection did not change with increasing time (since the first sample collection) over the sampling period, Odds Ratio (OR) 1.65 per day (95% CI 0.68, 4.02; p = 0.27). Similarly, viral detection did not change with increasing distance from the patient's bed (1 m, 2 m, or 3 m), OR 0.85 per metre (95% CI 0.38, 1.88; p = 0.69). The cycle threshold was lower (i.e., more virus) in The Ottawa Hospital (median quantification cycle [Cq] 30.8) where floors were cleaned once daily compared to the Toronto hospital (median Cq 37.2) where floors were cleaned twice daily. CONCLUSIONS: We were able to detect SARS-CoV-2 on the floors in rooms of patients with COVID-19. The viral burden did not vary over time or by distance from the patient's bed. These results suggest floor swabbing for the detection of SARS-CoV-2 in a built environment such as a hospital room is both accurate and robust to variation in sampling location and duration of occupancy.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Estudos Prospectivos , Quartos de Pacientes , Ambiente Construído , Ontário/epidemiologia
9.
NEJM Evid ; 2(3): EVIDoa2200203, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320044

RESUMO

BACKGROUND: Environmental surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through wastewater has become a useful tool for population-level surveillance. Built environment sampling may provide a more spatially refined approach for surveillance in congregate living settings. METHODS: We conducted a prospective study in 10 long-term care homes (LTCHs) between September 2021 and November 2022. Floor surfaces were sampled weekly at multiple locations within each building and analyzed for the presence of SARS-CoV-2 using quantitative reverse transcriptase polymerase chain reaction. The primary outcome was the presence of a coronavirus disease 2019 (Covid-19) outbreak in the week that floor sampling was performed. RESULTS: Over the 14-month study period, we collected 4895 swabs at 10 LTCHs. During the study period, 23 Covid-19 outbreaks occurred with 119 cumulative weeks under outbreak. During outbreak periods, the proportion of floor swabs that were positive for SARS-CoV-2 was 54.3% (95% confidence interval [CI], 52 to 56.6), and during non-outbreak periods it was 22.3% (95% CI, 20.9 to 23.8). Using the proportion of floor swabs positive for SARS-CoV-2 to predict Covid-19 outbreak status in a given week, the area under the receiver-operating characteristic curve was 0.84 (95% CI, 0.78 to 0.9). Among 10 LTCHs with an outbreak and swabs performed in the prior week, eight had positive floor swabs exceeding 10% at least 5 days before outbreak identification. For seven of these eight LTCHs, positivity of floor swabs exceeded 10% more than 10 days before the outbreak was identified. CONCLUSIONS: Detection of SARS-CoV-2 on floors is strongly associated with Covid-19 outbreaks in LTCHs. These data suggest a potential role for floor sampling in improving early outbreak identification.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Teste para COVID-19 , Assistência de Longa Duração , Surtos de Doenças
11.
Front Microbiol ; 13: 953964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060748

RESUMO

Pseudomonas aeruginosa, a ubiquitous opportunistic pathogen, is a leading cause of chronic infection of airways in cystic fibrosis (CF) patients. Chronic infections typically arise from colonization by environmental strains, followed by adaptation of P. aeruginosa to the conditions within the CF airway. It has been suggested that oxygen availability can be an important source of selection causing trait changes associated with the transition to chronic infection, but little data exist on the response of P. aeruginosa to varying levels of oxygen. Here, we use a diverse collection of P. aeruginosa strains recovered from both CF patients and environmental sources to evaluate the role of oxygen availability in driving adaptation to the CF lung while also accounting for phylogenetic relatedness. While we can detect a signal of phylogeny in trait responses to oxygen availability, niche of origin is a far stronger predictor. Specifically, strains isolated from the lungs of CF patients are more sensitive to external oxidative stress but more resistant to antibiotics under anoxic conditions. Additionally, many, though not all, patho-adaptive traits we assayed are insensitive to oxygen availability. Our results suggest that inferences about trait expression, especially those associated with the transition to chronic infection, depend on both the available oxygen and niche of origin of the strains being studied.

12.
Genome Biol Evol ; 14(6)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35660861

RESUMO

Pseudomonas aeruginosa is among the most problematic opportunistic pathogens for adults with cystic fibrosis (CF), causing repeated and resilient infections in the lung and surrounding airways. Evidence suggests that long-term infections are associated with diversification into specialized types but the underlying cause of that diversification and the effect it has on the persistence of infections remains poorly understood. Here, we use evolve-and-resequence experiments to investigate the genetic changes accompanying rapid, de novo phenotypic diversification in lab environments designed to mimic two aspects of human lung ecology: spatial structure and complex nutritional content. After ∼220 generations of evolution, we find extensive genetic variation present in all environments, including those that most closely resemble the CF lung. We use the abundance and frequency of nonsynonymous and synonymous mutations to estimate the ratio of mutations that are selectively neutral (hitchhikers) to those that are under positive selection (drivers). A significantly lower proportion of driver mutations in spatially structured populations suggests that reduced dispersal generates subpopulations with reduced effective population size, decreasing the supply of beneficial mutations and causing more divergent evolutionary trajectories. In addition, we find mutations in a handful of genes typically associated with chronic infection in the CF lung, including one gene associated with antibiotic resistance. This demonstrates that many of the genetic changes considered to be hallmarks of CF lung adaptation can arise as a result of adaptation to a novel environment and do not necessarily require antimicrobial treatment, immune system suppression, or competition from other microbial species to occur.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Fibrose Cística/complicações , Fibrose Cística/genética , Genômica , Humanos , Pulmão , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética
13.
Genome Biol Evol ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34132772

RESUMO

Synonymous mutations are often assumed to be neutral with respect to fitness because they do not alter the encoded amino acid and so cannot be "seen" by natural selection. Yet a growing body of evidence suggests that synonymous mutations can have fitness effects that drive adaptive evolution through their impacts on gene expression and protein folding. Here, we review what microbial experiments have taught us about the contribution of synonymous mutations to adaptation. A survey of site-directed mutagenesis experiments reveals the distributions of fitness effects for nonsynonymous and synonymous mutations are more similar, especially for beneficial mutations, than expected if all synonymous mutations were neutral, suggesting they should drive adaptive evolution more often than is typically observed. A review of experimental evolution studies where synonymous mutations have contributed to adaptation shows they can impact fitness through a range of mechanisms including the creation of illicit RNA polymerase binding sites impacting transcription and changes to mRNA folding stability that modulate translation. We suggest that clonal interference in evolving microbial populations may be the reason synonymous mutations play a smaller role in adaptive evolution than expected based on their observed fitness effects. We finish by discussing the impacts of falsely assuming synonymous mutations are neutral and discuss directions for future work exploring the role of synonymous mutations in adaptive evolution.


Assuntos
Uso do Códon , Mutação Silenciosa , Evolução Molecular , Mutação , Seleção Genética
14.
Front Microbiol ; 12: 613450, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841345

RESUMO

The importance of interference competition, where individuals compete through antagonistic traits such as the production of toxins, has long been recognized by ecologists, yet understanding how these types of interactions evolve remains limited. Toxin production is thought to be beneficial when competing with a competitor. Here, we explore if antagonism can evolve by long-term selection of the toxin (pyocin) producing strain Pseudomonas aeruginosa PAO1 in the presence (or absence) of one of three clinical isolates of the same species (Recipient) over ten serial transfers. We find that inhibition decreases in the absence of a recipient. In the presence of a recipient, antagonism evolved to be different depending on the recipient used. Our study shows that the evolution of interference competition by toxins can decrease or increase, experimentally demonstrating the importance of this type of interaction for the evolution of species interactions.

15.
Mol Biol Evol ; 38(2): 663-675, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32898270

RESUMO

The comparative genomics of the transition of the opportunistic pathogen Pseudomonas aeruginosa from a free-living environmental strain to one that causes chronic infection in the airways of cystic fibrosis (CF) patients remain poorly studied. Chronic infections are thought to originate from colonization by a single strain sampled from a diverse, globally distributed population, followed by adaptive evolution to the novel, stressful conditions of the CF lung. However, we do not know whether certain clades are more likely to form chronic infections than others and we lack a comprehensive view of the suite of genes under positive selection in the CF lung. We analyzed whole-genome sequence data from 1,000 P. aeruginosa strains with diverse ecological provenances including the CF lung. CF isolates were distributed across the phylogeny, indicating little genetic predisposition for any one clade to cause chronic infection. Isolates from the CF niche experienced stronger positive selection on core genes than those derived from environmental or acute infection sources, consistent with recent adaptation to the lung environment. Genes with the greatest differential positive selection in the CF niche include those involved in core cellular processes such as metabolism, energy production, and stress response as well as those linked to patho-adaptive processes such as antibiotic resistance, cell wall and membrane modification, quorum sensing, biofilms, mucoidy, motility, and iron homeostasis. Many genes under CF-specific differential positive selection had regulatory functions, consistent with the idea that regulatory mutations play an important role in rapid adaptation to novel environments.


Assuntos
Adaptação Biológica/genética , Fibrose Cística/microbiologia , Pulmão/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Doença Crônica , Fibrose Cística/complicações , Genoma Bacteriano , Humanos , Filogenia , Seleção Genética
16.
Proc Biol Sci ; 287(1934): 20201111, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32873205

RESUMO

How genetic variation arises and persists over evolutionary time despite the depleting effects of natural selection remains a long-standing question. Here, we investigate the impacts of two extreme forms of population regulation-at the level of the total, mixed population (hard selection) and at the level of local, spatially distinct patches (soft selection)-on the emergence and fate of diversity under strong divergent selection. We find that while the form of population regulation has little effect on rates of diversification, it can modulate the long-term fate of genetic variation, diversity being more readily maintained under soft selection compared to hard selection. The mechanism responsible for coexistence is negative frequency-dependent selection which, while present initially under both forms of population regulation, persists over the long-term only under soft selection. Importantly, coexistence is robust to continued evolution of niche specialist types under soft selection but not hard selection. These results suggest that soft selection could be a general mechanism for the maintenance of ecological diversity over evolutionary time scales.


Assuntos
Evolução Biológica , Seleção Genética , Animais , Ecossistema , Variação Genética , Densidade Demográfica
17.
Evol Appl ; 13(4): 781-793, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32211067

RESUMO

The ultimate causes of correlated evolution among sites in a genome remain difficult to tease apart. To address this problem directly, we performed a high-throughput search for correlated evolution among sites associated with resistance to a fluoroquinolone antibiotic using whole-genome data from clinical strains of Pseudomonas aeruginosa, before validating our computational predictions experimentally. We show that for at least two sites, this correlation is underlain by epistasis. Our analysis also revealed eight additional pairs of synonymous substitutions displaying correlated evolution underlain by physical linkage, rather than selection associated with antibiotic resistance. Our results provide direct evidence that both epistasis and physical linkage among sites can drive the correlated evolution identified by high-throughput computational tools. In other words, the observation of correlated evolution is not by itself sufficient evidence to guarantee that the sites in question are epistatic; such a claim requires additional evidence, ideally coming from direct estimates of epistasis, based on experimental evidence.

18.
Elife ; 82019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31322500

RESUMO

The fitness effects of synonymous mutations, nucleotide changes that do not alter the encoded amino acid, have often been assumed to be neutral, but a growing body of evidence suggests otherwise. We used site-directed mutagenesis coupled with direct measures of competitive fitness to estimate the distribution of fitness effects among synonymous mutations for a gene under directional selection and capable of adapting via synonymous nucleotide changes. Synonymous mutations had highly variable fitness effects, both deleterious and beneficial, resembling those of nonsynonymous mutations in the same gene. This variation in fitness was underlain by changes in transcription linked to the creation of internal promoter sites. A positive correlation between fitness and the presence of synonymous substitutions across a phylogeny of related Pseudomonads suggests these mutations may be common in nature. Taken together, our results provide the most compelling evidence to date that synonymous mutations with non-neutral fitness effects may in fact be commonplace.


Assuntos
Aptidão Genética , Seleção Genética , Mutação Silenciosa , Evolução Molecular Direcionada , Variação Genética , Mutagênese Sítio-Dirigida , Filogenia , Regiões Promotoras Genéticas , Pseudomonas/genética , Transcrição Gênica
19.
Trends Ecol Evol ; 34(8): 712-722, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31027838

RESUMO

How does novelty, a new, genetically based function, evolve? A compelling answer has been elusive because there are few model systems where both the genetic mechanisms generating novel functions and the ecological conditions that govern their origin and spread can be studied in detail. This review article considers what we have learned about the evolution of novelty from microbial selection experiments. This work reveals that the genetic routes to novelty can be more highly variable than standard models have led us to believe and underscores the importance of considering both genetics and ecology in this process.


Assuntos
Ecologia , Modelos Biológicos , Evolução Biológica , Seleção Genética
20.
Evol Lett ; 2(2): 134-143, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30283671

RESUMO

Antimicrobial resistance (AMR) is a growing global threat that, in the absence of new antibiotics, requires effective management of existing drugs. Here, we use experimental evolution of the opportunistic human pathogen Pseudomonas aeruginosa to explore how changing patterns of drug delivery modulates the spread of resistance in a population. Resistance evolves readily under both temporal and spatial variation in drug delivery and fixes rapidly under temporal, but not spatial, variation. Resistant and sensitive genotypes coexist in spatially varying conditions due to a resistance-growth rate trade-off which, when coupled to dispersal, generates negative frequency-dependent selection and a quasi-protected polymorphism. Coexistence is ultimately lost, however, because resistant types with improved growth rates in the absence of drug spread through the population. These results suggest that spatially variable drug prescriptions can delay but not prevent the spread of resistance and provide a striking example of how the emergence and eventual demise of biodiversity is underpinned by evolving fitness trade-offs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...