Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38826322

RESUMO

Rationale: TRPV4 channels are critical regulators of blood vascular function and have been shown to be dysregulated in many disease conditions in association with inflammation and tissue fibrosis. These are key features in the pathophysiology of lymphatic system diseases, including lymphedema and lipedema; however, the role of TRPV4 channels in the lymphatic system remains largely unexplored. TRPV4 channels are calcium permeable, non-selective cation channels that are activated by diverse stimuli, including shear stress, stretch, temperature, and cell metabolites, which may regulate lymphatic contractile function. Objective: To characterize the expression of TRPV4 channels in collecting lymphatic vessels and to determine the extent to which these channels regulate the contractile function of lymphatics. Methods and Results: Pressure myography on intact, isolated, and cannulated lymphatic vessels showed that pharmacological activation of TRPV4 channels with GSK1016790A (GSK101) led to contractile dysregulation. The response to GSK101 was multiphasic and included, 1) initial robust constriction that was sustained for ≥1 minute and in some instances remained for ≥4 minutes; and 2) subsequent vasodilation and partial or complete inhibition of lymphatic contractions associated with release of nitric oxide. The functional response to activation of TRPV4 channels displayed differences across lymphatics from four anatomical regions, but these differences were consistent across different species (mouse, rat, and non-human primate). Importantly, similar responses were observed following activation of TRPV4 channels in arterioles. The initial and sustained constriction was prevented with the COX inhibitor, indomethacin. We generated a controlled and spatially defined single-cell RNA sequencing (scRNAseq) dataset from intact and microdissected collecting lymphatic vessels. Our data uncovered a subset of macrophages displaying the highest expression of Trpv4 compared to other cell types within and surrounding the lymphatic vessel wall. These macrophages displayed a transcriptomic profile consistent with that of tissue-resident macrophages (TRMs), including differential expression of Lyve1 , Cd163 , Folr2 , Mrc1 , Ccl8 , Apoe , Cd209f , Cd209d , and Cd209g ; and at least half of these macrophages also expressed Timd4. This subset of macrophages also highly expressed Txa2s , which encodes the thromboxane A2 (TXA2) synthase. Inhibition of TXA2 receptors (TXA2Rs) prevented TRPV4-mediated contractile dysregulation. TXA2R activation on LMCs caused an increase in mobilization of calcium from intracellular stores through Ip3 receptors which promoted store operated calcium entry and vasoconstriction. Conclusions: Clinical studies have linked cancer-related lymphedema with an increased infiltration of macrophages. While these macrophages have known anti-inflammatory and pro-lymphangiogenic roles, as well as promote tissue repair, our results point to detrimental effects to the pumping capacity of collecting lymphatic vessels mediated by activation of TRPV4 channels in macrophages. Pharmacological targeting of TRPV4 channels in LYVE1-expressing macrophages or pharmacological targeting of TXA2Rs may offer novel therapeutic strategies to improve lymphatic pumping function and lymph transport in lymphedema.

2.
J Invest Dermatol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38879154

RESUMO

Breast cancer-related lymphedema (BCRL) is characterized by skin changes, swelling, fibrosis, and recurrent skin infections. Clinical studies have suggested that lymphedema results in skin barrier defects; however, the underlying cellular mechanisms and the effects of bacterial contamination on skin barrier function remain unknown. In matched biopsies from patients with unilateral BCRL, we observed decreased expression of filaggrin and the tight junction protein zona occludens-1 (ZO-1) in skin affected by moderate lymphedema, or by subclinical lymphedema in which dermal backflow of lymph was identified by indocyanine green lymphography, relative to controls (areas without backflow and from the unaffected arm). In vitro stimulation of keratinocytes with lymph fluid obtained from patients undergoing lymphedema surgery led to the same changes, as well as increased expression of keratin 14, a marker of immature keratinocytes. Finally, using mouse models of lymphedema, we showed that like the clinical scenario, the expression of skin barrier proteins was decreased relative to normal skin and that colonization with S. epidermidis bacteria amplified this effect, as well as lymphedema severity. Taken together, our findings suggest that lymphatic fluid stasis contributes to skin barrier dysfunction in lymphedema.

3.
Nat Immunol ; 25(5): 902-915, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589618

RESUMO

Repetitive exposure to antigen in chronic infection and cancer drives T cell exhaustion, limiting adaptive immunity. In contrast, aberrant, sustained T cell responses can persist over decades in human allergic disease. To understand these divergent outcomes, we employed bioinformatic, immunophenotyping and functional approaches with human diseased tissues, identifying an abundant population of type 2 helper T (TH2) cells with co-expression of TCF7 and LEF1, and features of chronic activation. These cells, which we termed TH2-multipotent progenitors (TH2-MPP) could self-renew and differentiate into cytokine-producing effector cells, regulatory T (Treg) cells and follicular helper T (TFH) cells. Single-cell T-cell-receptor lineage tracing confirmed lineage relationships between TH2-MPP, TH2 effectors, Treg cells and TFH cells. TH2-MPP persisted despite in vivo IL-4 receptor blockade, while thymic stromal lymphopoietin (TSLP) drove selective expansion of progenitor cells and rendered them insensitive to glucocorticoid-induced apoptosis in vitro. Together, our data identify TH2-MPP as an aberrant T cell population with the potential to sustain type 2 inflammation and support the paradigm that chronic T cell responses can be coordinated over time by progenitor cells.


Assuntos
Fator 1-alfa Nuclear de Hepatócito , Hipersensibilidade , Fator 1 de Ligação ao Facilitador Linfoide , Células-Tronco Multipotentes , Fator 1 de Transcrição de Linfócitos T , Células Th2 , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Células Th2/imunologia , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Hipersensibilidade/imunologia , Células-Tronco Multipotentes/metabolismo , Células-Tronco Multipotentes/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Linfopoietina do Estroma do Timo , Animais , Células Cultivadas , Camundongos
4.
J Invest Dermatol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38548256

RESUMO

Allergic contact dermatitis is a common inflammatory skin disease comprising 2 phases. During sensitization, immune cells are activated by exposure to various allergens, whereas repeated antigen exposure induces local inflammation during elicitation. In this study, we utilized mouse models lacking lymphatics in different skin regions to characterize the role of lymphatics separately in the 2 phases, using contact hypersensitivity as a model of human allergic inflammatory skin diseases. Lymphatic-deficient mice exhibited no major difference to single antigen exposure compared to controls. However, mice lacking lymphatics in both phases displayed reduced inflammation after repeated antigen exposure. Similarly, diminished immune response was observed in mice lacking lymphatics only in sensitization, whereas the absence of lymphatics only in the elicitation phase resulted in a more pronounced inflammatory immune response. This exaggerated inflammation is driven by neutrophils impacting regulatory T cell number. Collectively, our results demonstrate that skin lymphatics play an important but distinct role in the 2 phases of contact hypersensitivity. During sensitization, lymphatics contribute to the development of the antigen-specific immunization, whereas in elicitation, they moderate the inflammatory response and leukocyte infiltration in a neutrophil-dependent manner. These findings underscore the need for novel therapeutic strategies targeting the lymphatics in the context of allergic skin diseases.

5.
Clin Cancer Res ; 30(4): 703-718, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-37695642

RESUMO

PURPOSE: We conducted research on CDK4/6 inhibitors (CDK4/6i) simultaneously in the preclinical and clinical spaces to gain a deeper understanding of how senescence influences tumor growth in humans. PATIENTS AND METHODS: We coordinated a first-in-kind phase II clinical trial of the CDK4/6i abemaciclib for patients with progressive dedifferentiated liposarcoma (DDLS) with cellular studies interrogating the molecular basis of geroconversion. RESULTS: Thirty patients with progressing DDLS enrolled and were treated with 200 mg of abemaciclib twice daily. The median progression-free survival was 33 weeks at the time of the data lock, with 23 of 30 progression-free at 12 weeks (76.7%, two-sided 95% CI, 57.7%-90.1%). No new safety signals were identified. Concurrent preclinical work in liposarcoma cell lines identified ANGPTL4 as a necessary late regulator of geroconversion, the pathway from reversible cell-cycle exit to a stably arrested inflammation-provoking senescent cell. Using this insight, we were able to identify patients in which abemaciclib induced tumor cell senescence. Senescence correlated with increased leukocyte infiltration, primarily CD4-positive cells, within a month of therapy. However, those individuals with both senescence and increased TILs were also more likely to acquire resistance later in therapy. These suggest that combining senolytics with abemaciclib in a subset of patients may improve the duration of response. CONCLUSIONS: Abemaciclib was well tolerated and showed promising activity in DDLS. The discovery of ANGPTL4 as a late regulator of geroconversion helped to define how CDK4/6i-induced cellular senescence modulates the immune tumor microenvironment and contributes to both positive and negative clinical outcomes. See related commentary by Weiss et al., p. 649.


Assuntos
Aminopiridinas , Lipossarcoma , Humanos , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Lipossarcoma/tratamento farmacológico , Lipossarcoma/patologia , Senescência Celular , Quinase 4 Dependente de Ciclina , Microambiente Tumoral
6.
Curr Breast Cancer Rep ; : 1-9, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37359311

RESUMO

Purpose of Review: This review aims to summarize the current knowledge regarding the pharmacological interventions studied in both experimental and clinical trials for secondary lymphedema. Recent Findings: Lymphedema is a progressive disease that results in tissue swelling, pain, and functional disability. The most common cause of secondary lymphedema in developed countries is an iatrogenic injury to the lymphatic system during cancer treatment. Despite its high incidence and severe sequelae, lymphedema is usually treated with palliative options such as compression and physical therapy. However, recent studies on the pathophysiology of lymphedema have explored pharmacological treatments in preclinical and early phase clinical trials. Summary: Many potential treatment options for lymphedema have been explored throughout the past two decades including systemic agents and topical approaches to decrease the potential toxicity of systemic treatment. Treatment strategies including lymphangiogenic factors, anti-inflammatory agents, and anti-fibrotic therapies may be used independently or in conjunction with surgical approaches.

7.
PLoS One ; 18(5): e0283609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37196005

RESUMO

Lymphedema is a chronic condition that commonly occur from lymphatic injury following surgical resection of solid malignancies. While many studies have centered on the molecular and immune pathways that perpetuate lymphatic dysfunction, the role of the skin microbiome in lymphedema development remains unclear. In this study, skin swabs collected from normal and lymphedema forearms of 30 patients with unilateral upper extremity lymphedema were analyzed by 16S ribosomal RNA sequencing. Statistical models for microbiome data were utilized to correlate clinical variables with microbial profiles. Overall, 872 bacterial taxa were identified. There were no significant differences in microbial alpha diversity of the colonizing bacteria between normal and lymphedema skin samples (p = 0.25). Notably, for patients without a history of infection, a one-fold change in relative limb volume was significantly associated with a 0.58-unit increase in Bray-Curtis microbial distance between paired limbs (95%CI = 0.11,1.05, p = 0.02). Additionally, several genera, including Propionibacterium and Streptococcus, demonstrated high variability between paired samples. In summary, we demonstrate high compositional heterogeneity in the skin microbiome in upper extremity secondary lymphedema, supporting future studies into the role of host-microbe interactions on lymphedema pathophysiology.


Assuntos
Vasos Linfáticos , Linfedema , Neoplasias , Humanos , Extremidade Superior , Vasos Linfáticos/patologia , Pele/patologia , Neoplasias/patologia , Linfedema/patologia
8.
Transl Res ; 257: 43-53, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36736951

RESUMO

Transforming growth factor-beta 1 (TGF-ß1)-mediated tissue fibrosis is an important regulator of lymphatic dysfunction in secondary lymphedema. However, TGF-ß1 targeting can cause toxicity and autoimmune complications, limiting clinical utility. Angiotensin II (Ang II) modulates intracellular TGF-ß1 signaling, and inhibition of Ang II production using angiotensin-converting enzyme (ACE) inhibitors, such as captopril, has antifibrotic efficacy in some pathological settings. Therefore, we analyzed the expression of ACE and Ang II in clinical lymphedema biopsy specimens from patients with unilateral breast cancer-related lymphedema (BCRL) and mouse models, and found that cutaneous ACE expression is increased in lymphedematous tissues. Furthermore, topical captopril decreases fibrosis, activation of intracellular TGF-ß1 signaling pathways, inflammation, and swelling in mouse models of lymphedema. Captopril treatment also improves lymphatic function and immune cell trafficking by increasing collecting lymphatic pumping. Our results show that the renin-angiotensin system in the skin plays an important role in the regulation of fibrosis in lymphedema, and inhibition of this signaling pathway may hold merit for treating lymphedema.


Assuntos
Captopril , Linfedema , Camundongos , Animais , Captopril/farmacologia , Captopril/uso terapêutico , Fator de Crescimento Transformador beta1/metabolismo , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Fibrose , Angiotensina II , Linfedema/tratamento farmacológico , Linfedema/etiologia
9.
bioRxiv ; 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36711669

RESUMO

Epidermal changes are histological hallmarks of secondary lymphedema, but it is unknown if keratinocytes contribute to its pathophysiology. Using clinical lymphedema specimens and mouse models, we show that keratinocytes play a primary role in lymphedema development by producing T-helper 2 (Th2) -inducing cytokines. Specifically, we find that keratinocyte proliferation and expression of protease-activated receptor 2 (PAR2) are early responses following lymphatic injury and regulate the expression of Th2-inducing cytokines, migration of Langerhans cells, and skin infiltration of Th2-differentiated T cells. Furthermore, inhibition of PAR2 activation with a small molecule inhibitor or the proliferation inhibitor teriflunomide (TF) prevents activation of keratinocytes stimulated with lymphedema fluid. Finally, topical TF is highly effective for decreasing swelling, fibrosis, and inflammation in a preclinical mouse model. Our findings suggest that lymphedema is a chronic inflammatory skin disease, and topically targeting keratinocyte activation may be a clinically effective therapy for this condition.

10.
Plast Reconstr Surg ; 151(2): 330e-341e, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696336

RESUMO

SUMMARY: Lymphedema is a progressive disease of the lymphatic system arising from impaired lymphatic drainage, accumulation of interstitial fluid, and fibroadipose deposition. Secondary lymphedema resulting from cancer treatment is the most common form of the disease in developed countries, affecting 15% to 40% of patients with breast cancer after lymph node dissection. Despite recent advances in microsurgery, outcomes remain variable and, in some cases, inadequate. Thus, development of novel treatment strategies is an important goal. Research over the past decade suggests that lymphatic injury initiates a chronic inflammatory response that regulates the pathophysiology of lymphedema. T-cell inflammation plays a key role in this response. In this review, the authors highlight the cellular and molecular mechanisms of lymphedema and discuss promising preclinical therapies.


Assuntos
Vasos Linfáticos , Linfedema , Humanos , Linfedema/etiologia , Sistema Linfático , Fibrose , Inflamação/etiologia
11.
Cells ; 13(1)2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38201272

RESUMO

Vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3), a receptor tyrosine kinase encoded by the FLT4 gene, plays a significant role in the morphogenesis and maintenance of lymphatic vessels. Under both normal and pathologic conditions, VEGF-C and VEGF-D bind VEGFR3 on the surface of lymphatic endothelial cells (LECs) and induce lymphatic proliferation, migration, and survival by activating intracellular PI3K-Akt and MAPK-ERK signaling pathways. Impaired lymphatic function and VEGFR3 signaling has been linked with a myriad of commonly encountered clinical conditions. This review provides a brief overview of intracellular VEGFR3 signaling in LECs and explores examples of dysregulated VEGFR3 signaling in various disease states, including (1) lymphedema, (2) tumor growth and metastasis, (3) obesity and metabolic syndrome, (4) organ transplant rejection, and (5) autoimmune disorders. A more complete understanding of the molecular mechanisms underlying the lymphatic pathology of each disease will allow for the development of novel strategies to treat these chronic and often debilitating illnesses.


Assuntos
Células Endoteliais , Fosfatidilinositol 3-Quinases , Fator A de Crescimento do Endotélio Vascular , Endotélio Linfático , Transdução de Sinais
12.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362253

RESUMO

Steady-state lymphatic endothelial cells (LECs) can induce peripheral tolerance by presenting endogenous antigens on MHC class I (MHC-I) molecules. Recent evidence suggests that lymph node LECs can cross-present tumor antigens on MHC-I to suppress tumor-specific CD8+ T cells. Whether LECs can act as immunosuppressive cells in an MHC-II dependent manner in the local tumor microenvironment (TME) is not well characterized. Using murine heterotopic and spontaneous tumor models, we show that LECs in the TME increase MHC-II expression in the context of increased co-inhibitory signals. We provide evidence that tumor lymphatics in human melanoma and breast cancer also upregulate MHC-II compared to normal tissue lymphatics. In transgenic mice that lack LEC-specific MHC-II expression, heterotopic tumor growth is attenuated, which is associated with increased numbers of tumor-specific CD8+ and effector CD4+ T cells, as well as decreased numbers of T regulatory CD4+ cells in the TME. Mechanistically, we show that murine and human dermal LECs can take up tumor antigens in vitro. Antigen-loaded LECs in vitro can induce antigen-specific proliferation of CD8+ T cells but not CD4+ T cells; however, these proliferated CD8+ T cells have reduced effector function in the presence of antigen-loaded LECs. Taken together, our study suggests LECs can act as immunosuppressive cells in the TME in an MHC-II dependent manner. Whether this is a result of direct tumor antigen presentation on MHC-II requires additional investigation.


Assuntos
Linfócitos do Interstício Tumoral , Melanoma , Camundongos , Humanos , Animais , Células Endoteliais/metabolismo , Apresentação de Antígeno , Linfócitos T CD8-Positivos , Antígenos de Neoplasias/metabolismo , Camundongos Transgênicos , Melanoma/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Linfócitos T CD4-Positivos , Microambiente Tumoral
13.
Front Pharmacol ; 13: 1028926, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339530

RESUMO

Purpose: Secondary lymphedema is a common complication of cancer treatment for which no effective drug treatments yet exist. Level I clinical data suggests that doxycycline is effective for treating filariasis-induced lymphedema, in which it decreases tissue edema and skin abnormalities; however, this treatment has not been tested for cancer-related lymphedema. Over the past year, we used doxycycline in an off-label manner in patients with breast cancer-related secondary lymphedema. The purpose of this report was to retrospectively analyze the efficacy of this treatment. Methods: Patients who presented to our lymphedema clinic between January 2021 and January 2022 were evaluated, and barring allergies or contraindications to doxycycline treatment, were counseled on the off-label use of this treatment. Patients who wished to proceed were treated with doxycycline (200 mg given orally once daily) for 6 weeks. After IRB approval of this study, lymphedema outcomes were retrospectively reviewed. Results: Seventeen patients with a mean follow-up of 17.0 ± 13.2 weeks were identified in our retrospective review. Although doxycycline treatment had no significant effect on relative limb volume change or L-Dex scores, we found a significant improvement in patient-reported quality of life. Analysis of patient responses to the Lymphedema Life Impact Scale showed a significant improvement in the total impairment score due to improvements in the physical and psychological well-being subscales (p = 0.03, p = 0.03, p = 0.04, respectively). Conclusion: This small, retrospective study did not show significant improvements in limb volume or L-Dex scores in patients with breast cancer-related lymphedema treated with doxycycline. However, our patients reported improvements in quality-of-life measures using a validated lymphedema patient-reported outcome instrument. Our results suggest that doxycycline may be of use in patients with breast cancer-related lymphedema; however, larger and more rigorous studies are needed.

14.
Front Aging ; 3: 864860, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821848

RESUMO

Lymphatic structure and function play a critical role in fluid transport, antigen delivery, and immune homeostasis. A dysfunctional lymphatic system is associated with chronic low-grade inflammation of peripheral tissues, poor immune responses, and recurrent infections, which are also hallmarks of aging pathology. Previous studies have shown that aging impairs lymphatic structure and function in a variety of organ systems, including the intestines and central nervous system. However, previous studies are mostly limited to qualitative analysis of lymphatic structural changes and quantification of intestinal collecting vessel contractile function. It is not clear whether decreased lymphatic function contributes to pathological conditions related to aging, nor how it affects the skin immune microenvironment. Further, the effects of aging on skin initial and collecting lymphatic vessels, dendritic cell (DC) migration, cutaneous lymphatic pumping, and VEGFR-3 signaling in lymphatic endothelial cells (LECs) have not been quantitatively analyzed. Here, using fluorescent immunohistochemistry and flow cytometry, we confirm that aging decreases skin initial and collecting lymphatic vessel density. Indocyanine green (ICG) lymphangiography and DC migration assays confirm that aging decreases both fluid pumping and cell migration via lymphatic vessels. At the cellular level, aging causes decreased VEGFR-3 signaling, leading to increased LEC apoptosis and senescence. Finally, we determined that aging causes decreased lymphatic production of chemokines and alters LEC expression of junctional and adhesion molecules. This in turn leads to increased peri-lymphatic inflammation and nitrosative stress that might contribute to aging pathology in a feed-forward manner. Taken together, our study, in addition to quantitatively corroborating previous findings, suggests diverse mechanisms that contribute to lymphatic dysfunction in aging that in turn exacerbate the pathology of aging in a feed-forward manner.

15.
Clin Transl Med ; 12(6): e758, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35652284

RESUMO

BACKGROUND: Secondary lymphedema is a common complication of cancer treatment, and previous studies have shown that the expression of transforming growth factor-beta 1 (TGF-ß1), a pro-fibrotic and anti-lymphangiogenic growth factor, is increased in this disease. Inhibition of TGF-ß1 decreases the severity of the disease in mouse models; however, the mechanisms that regulate this improvement remain unknown. METHODS: Expression of TGF-ß1 and extracellular matrix molecules (ECM) was assessed in biopsy specimens from patients with unilateral breast cancer-related lymphedema (BCRL). The effects of TGF-ß1 inhibition using neutralizing antibodies or a topical formulation of pirfenidone (PFD) were analyzed in mouse models of lymphedema. We also assessed the direct effects of TGF-ß1 on lymphatic endothelial cells (LECs) using transgenic mice that expressed a dominant-negative TGF-ß receptor selectively on LECs (LECDN-RII ). RESULTS: The expression of TGF-ß1 and ECM molecules is significantly increased in BCRL skin biopsies. Inhibition of TGF-ß1 in mouse models of lymphedema using neutralizing antibodies or with topical PFD decreased ECM deposition, increased the formation of collateral lymphatics, and inhibited infiltration of T cells. In vitro studies showed that TGF-ß1 in lymphedematous tissues increases fibroblast, lymphatic endothelial cell (LEC), and lymphatic smooth muscle cell stiffness. Knockdown of TGF-ß1 responsiveness in LECDN-RII resulted in increased lymphangiogenesis and collateral lymphatic formation; however, ECM deposition and fibrosis persisted, and the severity of lymphedema was indistinguishable from controls. CONCLUSIONS: Our results show that TGF-ß1 is an essential regulator of ECM deposition in secondary lymphedema and that inhibition of this response is a promising means of treating lymphedema.


Assuntos
Linfedema , Fator de Crescimento Transformador beta1 , Animais , Anticorpos Neutralizantes/farmacologia , Doença Crônica , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fibrose , Humanos , Inflamação/patologia , Linfedema/genética , Linfedema/metabolismo , Linfedema/patologia , Camundongos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
16.
Cell Stem Cell ; 29(7): 1067-1082.e18, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35728595

RESUMO

Barrier epithelia depend upon resident stem cells for homeostasis, defense, and repair. Epithelial stem cells of small and large intestines (ISCs) respond to their local microenvironments (niches) to fulfill a continuous demand for tissue turnover. The complexity of these niches and underlying communication pathways are not fully known. Here, we report a lymphatic network at the intestinal crypt base that intimately associates with ISCs. Employing in vivo loss of function and lymphatic:organoid cocultures, we show that crypt lymphatics maintain ISCs and inhibit their precocious differentiation. Pairing single-cell and spatial transcriptomics, we apply BayesPrism to deconvolve expression within spatial features and develop SpaceFold to robustly map the niche at high resolution, exposing lymphatics as a central signaling hub for the crypt in general and ISCs in particular. We identify WNT-signaling factors (WNT2, R-SPONDIN-3) and a hitherto unappreciated extracellular matrix protein, REELIN, as crypt lymphatic signals that directly govern the regenerative potential of ISCs.


Assuntos
Intestinos , Células-Tronco , Proliferação de Células , Mucosa Intestinal/metabolismo , Organoides , Transdução de Sinais , Proteínas Wnt/metabolismo
17.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216243

RESUMO

The lymphatic system consists of a unidirectional hierarchy of vessels responsible for fluid homeostasis, lipid absorption, and the transport of immune cells and antigens to secondary lymphoid organs. In cancer, lymphatics play complex and heterogenous roles that can promote or inhibit tumor growth. While lymphatic proliferation and remodeling promote tumor dissemination, functional lymphatics are necessary for generating an effective immune response. Recent reports have noted lymphatic-dependent effects on the efficacy of immunotherapy. These findings suggest that the impact of lymphatic vessels on tumor progression is organ- and context-specific and that a greater understanding of the interaction of tumor cells, lymphatics, and the tumor microenvironment can unveil novel therapies.


Assuntos
Imunomodulação/imunologia , Sistema Linfático/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Animais , Humanos , Imunidade/imunologia , Microambiente Tumoral/imunologia
18.
Front Pharmacol ; 13: 828513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35145417

RESUMO

Lymphedema is a chronic disease that results in swelling and decreased function due to abnormal lymphatic fluid clearance and chronic inflammation. In Western countries, lymphedema most commonly develops following an iatrogenic injury to the lymphatic system during cancer treatment. It is estimated that as many as 10 million patients suffer from lymphedema in the United States alone. Current treatments for lymphedema are palliative in nature, relying on compression garments and physical therapy to decrease interstitial fluid accumulation in the affected extremity. However, recent discoveries have increased the hopes of therapeutic interventions that may promote lymphatic regeneration and function. The purpose of this review is to summarize current experimental pharmacological strategies in the treatment of lymphedema.

19.
Nat Cancer ; 2(12): 1387-1405, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34957415

RESUMO

Secreted extracellular vesicles (EVs) influence the tumor microenvironment and promote distal metastasis. Here, we analyzed the involvement of melanoma-secreted EVs in lymph node pre-metastatic niche formation in murine models. We found that small EVs (sEVs) derived from metastatic melanoma cell lines were enriched in nerve growth factor receptor (NGFR, p75NTR), spread through the lymphatic system and were taken up by lymphatic endothelial cells, reinforcing lymph node metastasis. Remarkably, sEVs enhanced lymphangiogenesis and tumor cell adhesion by inducing ERK kinase, nuclear factor (NF)-κB activation and intracellular adhesion molecule (ICAM)-1 expression in lymphatic endothelial cells. Importantly, ablation or inhibition of NGFR in sEVs reversed the lymphangiogenic phenotype, decreased lymph node metastasis and extended survival in pre-clinical models. Furthermore, NGFR expression was augmented in human lymph node metastases relative to that in matched primary tumors, and the frequency of NGFR+ metastatic melanoma cells in lymph nodes correlated with patient survival. In summary, we found that NGFR is secreted in melanoma-derived sEVs, reinforcing lymph node pre-metastatic niche formation and metastasis.


Assuntos
Vesículas Extracelulares , Melanoma , Animais , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Linfangiogênese/fisiologia , Metástase Linfática , Melanoma/metabolismo , Camundongos , Proteínas do Tecido Nervoso , Receptores de Fator de Crescimento Neural/genética , Microambiente Tumoral
20.
Biology (Basel) ; 10(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34571811

RESUMO

Recent studies suggest that Th2 cells play a key role in the pathology of secondary lymphedema by elaborating cytokines such as IL4 and IL13. The aim of this study was to test the efficacy of QBX258, a monoclonal IL4/IL13 neutralizing antibody, in women with breast cancer-related lymphedema (BCRL). We enrolled nine women with unilateral stage I/II BCRL and treated them once monthly with intravenous infusions of QBX258 for 4 months. We measured limb volumes, bioimpedance, and skin tonometry, and analyzed the quality of life (QOL) using a validated lymphedema questionnaire (Upper Limb Lymphedema 27, ULL-27) before treatment, immediately after treatment, and 4 months following treatment withdrawal. We also obtained 5 mm skin biopsies from the normal and lymphedematous limbs before and after treatment. Treatment was well-tolerated; however, one patient with a history of cellulitis developed cellulitis during the trial and was excluded from further analysis. We found no differences in limb volumes or bioimpedance measurements after drug treatment. However, QBX258 treatment improved skin stiffness (p < 0.001) and improved QOL measurements (Physical p < 0.05, Social p = 0.01). These improvements returned to baseline after treatment withdrawal. Histologically, treatment decreased epidermal thickness, the number of proliferating keratinocytes, type III collagen deposition, infiltration of mast cells, and the expression of Th2-inducing cytokines in the lymphedematous skin. Our limited study suggests that immunotherapy against Th2 cytokines may improve skin changes and QOL of women with BCRL. This treatment appears to be less effective for decreasing limb volumes; however, additional studies are needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA