Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 432
Filtrar
1.
Dalton Trans ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022912

RESUMO

First examples of covalently linked triphyrin(2.1.1)-triphyrin(2.1.1) homo dimers connected via flexible alkoxy linkers at ß-pyrrole positions were synthesized in 28-30% yields by reacting 2-bromo triphyrin(2.1.1) with three different alkane diols such as 1,2-ethanediol, 1,4-butanediol and 1,6-hexanediol in toluene under Pd2(dba)3/DPEphos catalyzed conditions by refluxing for 12-20 h. One of the free base triphyrin-triphyrin homo dimers was metallated by treating the homo dimer with Re(CO)5Cl in toluene under reflux and afforded bis-Re(I) homo dimer complex in 53% yield. Three free base homo dimers and one bis-Re(I) homo dimer complex were thoroughly characterized and studied using HR-MS, 1D and 2D NMR, absorption spectroscopy, cyclic voltammetry and DFT calculations. Our attempts to obtain the X-ray structure of homo dimers were not successful. However, DFT studies revealed that homo dimers prefer to exist in anti-conformation rather than syn-conformation and both triphyrin macrocycles in homo dimers were similar in terms of the deviation of pyrrole rings from the mean plane defined by the four meso carbons of the respective triphyrin unit. Absorption spectra of homo dimers showed similar absorption features such as in triphyrin(2.1.1) with slight changes in their absorption peak maxima. Electrochemical studies revealed that the homo dimers were electron rich, whereas the bis-Re(I) complex was electron deficient in nature.

2.
J Phys Chem Lett ; 15(25): 6575-6584, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38885443

RESUMO

Lead-free double perovskite nanocrystals (A2B'(III)B″(I)X6 NCs) address the instability and toxicity concerns of lead-based counterparts, but their device performance is limited by subpar absorption and unexplored carrier dynamics. Impurity ion doping offers a route to tune electrical conductivity and charge carrier transport. Herein, we synthesized Cu-doped Cs2AgBiBr6 (CABB) nanocrystals using a hot-injection approach and investigated the charge carrier's dynamics through ultrafast pump-probe spectroscopy. Copper introduction into the CABB lattice enhanced absorption in the near-infrared region and introduced sub-band gap defect states in CABB NCs. The transient absorption study revealed a faster bleach decay with increased copper doping, as a result of charge transfer from the conduction band to copper defect states. Also, an optical pump terahertz probe study displays higher photoconductivity and mobility in Cu-doped CABB NCs. Slower mobility decay in Cu-doped systems was attributed to the charge carrier's entrapment at the defect state. These findings suggest that copper-doped CABB is a superior contender for optoelectronic applications over conventional CABB.

3.
Int J Biol Macromol ; 274(Pt 1): 133188, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880456

RESUMO

Morphine addiction poses a significant challenge to global healthcare. Current opioid substitution therapies, such as buprenorphine, naloxone and methadone are effective but often lead to dependence. Thus, exploring alternative treatments for opioid addiction is crucial. We have developed a novel vaccine that presents morphine and Pam3Cys (a TLR-2 agonist) on the surface of Acr1 nanoparticles. This vaccine has self-adjuvant properties and targets TLR-2 receptors on antigen-presenting cells, particularly dendritic cells. Our vaccination strategy promotes the proliferation and differentiation of morphine-specific B-cells and Acr1-reactive CD4 T-cells. Additionally, the vaccine elicited the production of high-affinity anti-morphine antibodies, effectively eliminating morphine from the bloodstream and brain in mice. It also reduced the expression of addiction-associated µ-opioid receptor and dopamine genes. The significant increase in memory CD4 T-cells and B-cells indicates the vaccine's ability to induce long-lasting immunity against morphine. This vaccine holds promise as a prophylactic measure against morphine addiction.

4.
Mol Pharm ; 21(7): 3643-3660, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885973

RESUMO

Sterol derivatives are a crucial part of liposomes, as their concentration and nature can induce significant alternations in their characteristic features. For natural liposomal-based (phospholipid-based) studies, the bulk literature is already present depicting the role of the concentration or nature of different sterol derivatives in modulation of membrane properties. However, the studies aiming at evaluating the effect of sterol derivatives on synthetic liposomal assemblies are limited to cholesterol (Chl), and a comparative effect with other sterol derivatives, such as ergosterol (Erg), has never been studied. To fill this research gap, through this work, we intend to provide insights into the concentration-dependent effect of two sterol derivatives (Chl and Erg) on a synthetic liposomal assembly (i.e., metallosomes) prepared via thin film hydration route using a double-tailed metallosurfactant fabricated by modifying cetylpyridinium chloride with cobalt (Co) (i.e., Co:CPC II). The morphological evaluations with cryogenic-transmission electron microscopy (cryo-TEM), atomic force microscopy (AFM), and field emission-scanning electron microscopy (FE-SEM) indicated that metallosomes retained their spherical morphology irrespective of the nature and concentration of sterol derivatives. However, the size, ζ-potential, and lamellar width values were significantly modified with the incorporation of sterol derivatives in a concentration-dependent manner. In-depth studies affirmed that the extent of modulation of the bilayer in terms of hydrophobicity, fluidity, and rigidity was more severe with Chl than Erg. Such differences in the membrane properties lead to their contrasting behavior in the delivery of the broad-spectrum active compound "curcumin". From entrapment to in vitro behavior, the metallosomes demonstrated dissimilar behavior as even though Erg-modified metallosomes (at higher concentrations of Erg) exhibited low entrapment efficiency, they still could easily release >80% of the entrapped drug. In vitro studies conducted with Staphylococcus aureus bacterial cultures further revealed an interesting pattern of activity as the incorporation of Chl reduced the toxicity of the self-assembly, whereas their Erg-modified counterparts yielded slightly augmented toxicity toward these bacterial cells. Furthermore, Chl- and Erg-modified assemblies also exhibited contrasting behavior in their interaction studies with bacterial DNA.


Assuntos
Colesterol , Cobalto , Ergosterol , Bicamadas Lipídicas , Lipossomos , Ergosterol/química , Cobalto/química , Lipossomos/química , Colesterol/química , Bicamadas Lipídicas/química , Microscopia de Força Atômica
5.
J Chem Phys ; 160(24)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38920401

RESUMO

Lead halide perovskites (LHPs) have gained prominence for their exceptional photophysical properties, holding promise for applications in high-end optoelectronic devices. However, the presence of lead is one of the major obstacles to the commercialization of LHPs in the field of photovoltaics. To address this, researchers have explored environment friendly lead-free perovskite solar cells by investigating non-toxic perovskite materials. This study explores the enhancement of photophysical properties through chemical engineering, specifically cation exchange, focusing on the crucial photophysical process of hot carrier cooling. Employing femtosecond transient absorption spectroscopy and optical pump terahertz probe spectroscopy, we have probed the carrier relaxation dynamics in A3Sb2I9 with cesium and rubidium cations. This study unravels that the carrier relaxation is found to be slower in Rb3Sb2I9; along with this, the transient mobility decay is found to be retarded. Overall, this study suggests that an antimony-based Rb3Sb2I9 perovskite could be a substantial lead-free perovskite in photovoltaics. These findings provide valuable insights into cation engineering strategies, aiming to improve the overall performance of lead-free-based photovoltaic devices.

6.
Mol Biotechnol ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896180

RESUMO

Genetic and epigenetic variations produced via cell and tissue culture open up new sources of variability intra-species which can be used to improve crops. The use of in vitro generated somaclonal variations for selecting novel variants aids in the development of novel genotypes having desirable agronomic traits that can be released as varieties or utilized for breeding purposes. Horticultural crops give higher yield and productivity per unit area than other crops, as well as provide good economic returns which have led to an increase in their potential benefits throughout time. The last three to four decades have seen the selection and release of a number of valuable somaclonal variants, many of which possess remarkable features including disease resistance, high yield, improved nutritional quality and abiotic stress tolerance. Generating somaclonal variations has given breeders a novel alternative option for obtaining genetic diversity in horticultural crops and without advanced technologies. The variations introduced through tissue culture process, methods to determine and validate genetic changes in vitro regenerated plantlets, along with prospective application of such variations in horticultural crops' improvement are reviewed in the present work.

7.
bioRxiv ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38826387

RESUMO

Human noroviruses (HuNoVs) are a significant cause of both epidemic and sporadic acute gastroenteritis worldwide. The lack of a reproducible culture system for HuNoVs was a major obstacle in studying virus replication and pathogenesis for almost a half-century. This barrier was overcome with our successful cultivation of multiple HuNoV strains in human intestinal enteroids (HIEs), which has significantly advanced HuNoV research. We previously optimized culture media conditions and generated genetically-modified HIE cultures to enhance HuNoV replication in HIEs. Building upon these achievements, we now present additional advancements to this culture system, which involve testing different media, unique HIE lines, and additional virus strains. HuNoV infectivity was evaluated and compared in new HIE models, including HIEs generated from different intestinal segments of individual adult organ donors, HIEs made from human embryonic stem cell-derived human intestinal organoids that were transplanted into mice (H9tHIEs), genetically-engineered (J4 FUT2 knock-in [ KI ], J2 STAT1 knock-out [ KO ]) HIEs, as well as HIEs derived from a patient with common variable immunodeficiency (CVID) and from infants. Our findings reveal that small intestinal HIEs, but not colonoids, from adults, H9tHIEs, HIEs from a CVID patient, and HIEs from infants support HuNoV replication with segment and strain-specific differences in viral infection. J4 FUT2-KI HIEs exhibit the highest susceptibility to HuNoV infection, allowing the cultivation of a broader range of GI and GII HuNoV strains than previously reported. Overall, these results contribute to a deeper understanding of HuNoVs and highlight the transformative potential of HIE cultures in HuNoV research. Importance: Human noroviruses (HuNoVs) are very contagious and cause significant acute gastroenteritis globally, but studying them has been hindered by the lack of a reproducible culture system for nearly 50 years. This barrier was overcome by successfully cultivating multiple HuNoV strains in human intestinal enteroids (HIEs), advancing HuNoV research. We previously optimized culture conditions and developed genetically modified HIEs to enhance HuNoV replication. In this study, we tested different media, unique HIE lines, and additional virus strains, evaluating HuNoV infectivity in new HIE models. These models include HIEs from various intestinal segments of adult donors, human embryonic stem cell-derived HIEs transplanted into mice (H9tHIEs), genetically-engineered HIEs (J4 FUT2 knock-in [ KI ], J2 STAT1 knock-out [ KO ]), HIEs from a common variable immunodeficiency (CVID) patient, and from infants. Our findings show that adult small intestinal HIEs, H9tHIEs, CVID patient HIEs, and infant HIEs support HuNoV replication with segment and strain-specific differences. J4 FUT2-KI HIEs exhibited the highest susceptibility, allowing cultivation of a broader range of HuNoV strains. These results enhance the understanding of HuNoVs and highlight the transformative potential of HIE cultures in HuNoV research.

8.
Environ Toxicol Pharmacol ; 108: 104467, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763439

RESUMO

Bisphenol A (BPA) is a ubiquitous industrial chemical used in the production of polycarbonate plastics and epoxy resins, found in numerous consumer products. Despite its widespread use, its potential adverse health effects have raised significant concerns. This review explores the molecular mechanisms and evidence-based literature underlying BPA-induced toxicities and its implications for human health. BPA is an endocrine-disrupting chemical (EDC) which exhibits carcinogenic properties by influencing various receptors, such as ER, AhR, PPARs, LXRs, and RARs. It induces oxidative stress and contributes to cellular dysfunction, inflammation, and DNA damage, ultimately leading to various toxicities including but not limited to reproductive, cardiotoxicity, neurotoxicity, and endocrine toxicity. Moreover, BPA can modify DNA methylation patterns, histone modifications, and non-coding RNA expression, leading to epigenetic changes and contribute to carcinogenesis. Overall, understanding molecular mechanisms of BPA-induced toxicity is crucial for developing effective strategies and policies to mitigate its adverse effects on human health.


Assuntos
Compostos Benzidrílicos , Disruptores Endócrinos , Fenóis , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Humanos , Disruptores Endócrinos/toxicidade , Animais , Estresse Oxidativo/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Poluentes Ambientais/toxicidade
9.
PLoS Med ; 21(5): e1004404, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728366

RESUMO

BACKGROUND: Cholera outbreaks are on the rise globally, with conflict-affected settings particularly at risk. Case-area targeted interventions (CATIs), a strategy whereby teams provide a package of interventions to case and neighboring households within a predefined "ring," are increasingly employed in cholera responses. However, evidence on their ability to attenuate incidence is limited. METHODS AND FINDINGS: We conducted a prospective observational cohort study in 3 conflict-affected states in Nigeria in 2021. Enumerators within rapid response teams observed CATI implementation during a cholera outbreak and collected data on household demographics; existing water, sanitation, and hygiene (WASH) infrastructure; and CATI interventions. Descriptive statistics showed that CATIs were delivered to 46,864 case and neighbor households, with 80.0% of cases and 33.5% of neighbors receiving all intended supplies and activities, in a context with operational challenges of population density, supply stock outs, and security constraints. We then applied prospective Poisson space-time scan statistics (STSS) across 3 models for each state: (1) an unadjusted model with case and population data; (2) an environmentally adjusted model adjusting for distance to cholera treatment centers and existing WASH infrastructure (improved water source, improved latrine, and handwashing station); and (3) a fully adjusted model adjusting for environmental and CATI variables (supply of Aquatabs and soap, hygiene promotion, bedding and latrine disinfection activities, ring coverage, and response timeliness). We ran the STSS each day of our study period to evaluate the space-time dynamics of the cholera outbreaks. Compared to the unadjusted model, significant cholera clustering was attenuated in the environmentally adjusted model (from 572 to 18 clusters) but there was still risk of cholera transmission. Two states still yielded significant clusters (range 8-10 total clusters, relative risk of 2.2-5.5, 16.6-19.9 day duration, including 11.1-56.8 cholera cases). Cholera clustering was completely attenuated in the fully adjusted model, with no significant anomalous clusters across time and space. Associated measures including quantity, relative risk, significance, likelihood of recurrence, size, and duration of clusters reinforced the results. Key limitations include selection bias, remote data monitoring, and the lack of a control group. CONCLUSIONS: CATIs were associated with significant reductions in cholera clustering in Northeast Nigeria despite operational challenges. Our results provide a strong justification for rapid implementation and scale-up CATIs in cholera-response, particularly in conflict settings where WASH access is often limited.


Assuntos
Cólera , Saneamento , Humanos , Nigéria/epidemiologia , Cólera/epidemiologia , Cólera/prevenção & controle , Estudos Prospectivos , Masculino , Higiene , Feminino , Adulto , Epidemias/prevenção & controle , Incidência , Surtos de Doenças/prevenção & controle , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Criança
10.
RSC Adv ; 14(22): 15374-15390, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38741961

RESUMO

In this study, two novel chalcone-derived 1,2,3-triazole-appended positional isomers (probe 6 and probe 9) were synthesized via the 'CuAAC' (Cu(i) - catalysed alkyne azide cycloaddition) methodology for the purpose of metal ion detection. The synthesized probes underwent characterization utilizing standard spectroscopic methodologies including FTIR, NMR (1H and 13C), and mass spectrometry. Subsequently, the sensing capabilities of these probes were explored using UV-Vis and fluorescence spectroscopy, wherein their selective recognition potential was established for Pb(ii) and Cu(ii), both of which can pose serious health hazards when prevalent in the environment above permissible limits. Both the probes exhibited fairly low limits of detection (LoD), determined as 5.69 µM and 6.55 µM in the case of probe 6 for Pb(ii) and Cu(ii) respectively; whereas the probe 9 exhibited an LoD of 5.06 µM and 7.52 µM for Pb(ii) and Cu(ii), respectively. The job's plot for the probe demonstrates the formation of a 1 : 1 complex between the metal and ligand. Furthermore, the interaction of the free probes with the metal ions in the metal-ligand complex was elucidated through 1H NMR analysis and validated theoretically using Density Functional Theory (DFT) simulations with the B3LYP/6-311G++(d,p) and B3LYP/LANL2DZ basis sets for geometry optimization of the probes and their corresponding metal complexes. These findings offer a reliable approach to Cu(ii) and Pb(ii) ion detection and can be further used for the potential applications in environmental monitoring and analytical chemistry.

11.
Biosens Bioelectron ; 257: 116311, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677018

RESUMO

One of the serious challenges facing modern point-of-care (PoC) molecular diagnostic platforms relate to reliable detection of low concentration biomarkers such as nucleic acids or proteins in biological samples. Non-specific analyte-receptor interactions due to competitive binding in the presence of abundant molecules, inefficient mass transport and very low number of analyte molecules in sample volume, in general pose critical hurdles for successful implementation of such PoC platforms for clinical use. Focusing on these specific challenges, this work reports a unique PoC biosensor that combines the advantages of nanoscale biologically-sensitive field-effect transistor arrays (BioFET-arrays) realized in a wafer-scale top-down nanofabrication as high sensitivity electrical transducers with that of sophisticated molecular programs (MPs) customized for selective recognition of analyte miRNAs and amplification resulting in an overall augmentation of signal transduction strategy. The MPs realize a programmable universal molecular amplifier (PUMA) in fluidic matrix on chip and provide a biomarker-triggered exponential release of small nucleic acid sequences easily detected by receptor-modified BioFETs. A common miRNA biomarker LET7a was selected for successful demonstration of this novel biosensor, achieving limit of detection (LoD) down to 10 fM and wide dynamic ranges (10 pM-10 nM) in complex physiological solutions. As the determination of biomarker concentration is implemented by following the electrical signal related to analyte-triggered PUMA in time-domain instead of measuring the threshold shifts of BioFETs, and circumvents direct hybridization of biomarkers at transducer surface, this new strategy also allows for multiple usage (>3 times) of the biosensor platform suggesting exceptional cost-effectiveness for practical use.


Assuntos
Técnicas Biossensoriais , Desenho de Equipamento , Limite de Detecção , MicroRNAs , Técnicas Biossensoriais/instrumentação , MicroRNAs/análise , Humanos , Biomarcadores , Transistores Eletrônicos , Sistemas Automatizados de Assistência Junto ao Leito , Dispositivos Lab-On-A-Chip
12.
Heliyon ; 10(8): e29429, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628770

RESUMO

Polyelectrolyte complexes (PECs) formed by the interaction between oppositely charged polymers have emerged as promising carriers for accomplishing colon-specific release. In this study, we have explored the potential of polyelectrolyte complexes between a succinate derivative of Leucaena leucocephala galactomannan and cationic guar gum for colon delivery of synbiotic. The PECs were prepared using a polyelectrolyte complexation method and characterized. The PECs exhibited excellent stability, with high encapsulation efficiency for both probiotics (95.53 %) and prebiotics (83.33 %). In vitro studies demonstrated enhanced survivability and proliferation of the encapsulated probiotics in the presence of prebiotics (93.29 %). The SEM images revealed a smooth and firm structure with reduced number of pores when both prebiotic and probiotic were encapsulated together. The treatment with synbiotic PECs in acetic acid induced IBD rats significantly relieves colitis symptoms as was evident from colon/body ratio, DAI score and histopathology studies. An increase in the protein and reduced glutathione levels and reduction in superoxide dismutase activity was observed in colitic rats that received synbiotic treatment as compared to colitic rats. Overall, this study highlights the potential of Leucaena leucocephala succinate-cationic guar gum PECs as a promising system for colon-specific synbiotic delivery, with implications for improved gut health and the treatment of various gastrointestinal disorders.

13.
JCO Glob Oncol ; 10: e2300427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38513187

RESUMO

PURPOSE: This study aims to examine the association between exposure to major ambient air pollutants and the incidence and mortality of lung cancer and some nonlung cancers. METHODS: This meta-analysis used PubMed and EMBASE databases to access published studies that met the eligibility criteria. Primary analysis investigated the association between exposure to air pollutants and cancer incidence and mortality. Study quality was assessed using the Newcastle Ottawa Scale. Meta-analysis was conducted using R software. RESULTS: The meta-analysis included 61 studies, of which 53 were cohort studies and eight were case-control studies. Particulate matter 2.5 mm or less in diameter (PM2.5) was the exposure pollutant in half (55.5%), and lung cancer was the most frequently studied cancer in 59% of the studies. A pooled analysis of exposure reported in cohort and case-control studies and cancer incidence demonstrated a significant relationship (relative risk [RR], 1.04 [95% CI, 1.02 to 1.05]; I2, 88.93%; P < .05). A significant association was observed between exposure to pollutants such as PM2.5 (RR, 1.08 [95% CI, 1.04 to 1.12]; I2, 68.52%) and nitrogen dioxide (NO2) (RR, 1.03 [95% CI, 1.01 to 1.05]; I2, 73.52%) and lung cancer incidence. The relationship between exposure to the air pollutants and cancer mortality demonstrated a significant relationship (RR, 1.08 [95% CI, 1.07 to 1.10]; I2, 94.77%; P < .001). Among the four pollutants, PM2.5 (RR, 1.15 [95% CI, 1.08 to 1.22]; I2, 95.33%) and NO2 (RR, 1.05 [95% CI, 1.02 to 1.08]; I2, 89.98%) were associated with lung cancer mortality. CONCLUSION: The study confirms the association between air pollution exposure and lung cancer incidence and mortality. The meta-analysis results could contribute to community cancer prevention and diagnosis and help inform stakeholders and policymakers in decision making.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Pulmonares , Humanos , Incidência , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Neoplasias Pulmonares/epidemiologia
14.
RSC Adv ; 14(11): 7383-7413, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38433942

RESUMO

In the quest to scrutinize and modify biological systems, the global research community has continued to explore bio-orthogonal click reactions, a set of reactions exclusively targeting non-native molecules within biological systems. These methodologies have brought about a paradigm shift, demonstrating the feasibility of artificial chemical reactions occurring on cellular surfaces, in the cell cytosol, or within the body - an accomplishment challenging to achieve with the majority of conventional chemical reactions. This review delves into the principles of bio-orthogonal click chemistry, contrasting metal-catalyzed and metal-free reactions of bio-orthogonal nature. It comprehensively explores mechanistic details and applications, highlighting the versatility and potential of this methodology in diverse scientific contexts, from cell labelling to biosensing and polymer synthesis. Researchers globally continue to advance this powerful tool for precise and selective manipulation of biomolecules in complex biological systems.

15.
J Environ Manage ; 355: 120431, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457890

RESUMO

Cover crops (CC) can improve phosphorus (P) cycling by reducing water related P losses and contributing to P nutrition of a rotational crop. This is particularly important in claypan soils with freeze-thaw cycles in early spring in the Midwest U.S. This 4-year study (2019-2022) examined the impact of CC monoculture and mix of CC species on P losses from a fertilizer application, and determined the P balance in soil compared to no cover crop (noCC). The CC mix consisted of wheat (Triticum aestivum L.), radish (Raphanus raphanistrum subsp. Sativus), and turnip (Brassica rapa subsp. Rapa) (3xCCmix) in 2019 and 2021 before corn, and cereal rye (Secale cereale L.) was planted as monoculture before soybean in 2020 and 2022. The 3xCCmix had no effect on total phosphorus (TP) and dissolved reactive phosphorus (PO4-P) concentration or load in 2019 and 2021. Cereal rye reduced TP and PO4-P load 70% and 73%, respectively, compared to noCC. The variation in soil moisture, temperature, and net precipitation from fertilizer application until CC termination affected available soil P pools due to variability in CC species P uptake, residue decomposition, and P loss in surface water runoff. Overall, the P budget calculations showed cereal rye had 2.4 kg ha-1 greater P uptake compared to the 3xCCmix species which also reduced P loss in water and had greater differences in soil P status compared to noCC. This study highlights the benefit of CCs in reducing P loss in surface runoff and immobilizing P through plant uptake. However, these effects were minimal with 3xCCmix species and variability in crop residue decomposition from different CC species could affect overall P-soil balance.


Assuntos
Agricultura , Fósforo , Fertilizantes , Solo , Produtos Agrícolas , Grão Comestível , Zea mays , Secale , Água
16.
Fitoterapia ; 175: 105898, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38467280

RESUMO

Underutilized fruits are thought to be nutrient and antioxidant gold mines. Despite their high nutritive value, therapeutic properties, and ability to grow in adverse soil and climatic conditions, they have received little attention. However, these underutilized fruits are an important component of traditional foods, particularly in arid and semiarid regions of Rajasthan. Lasoda (Cordia myxa) contains numerous phytochemicals that contribute to its antioxidant potential, including tannins, flavonoids, phenolic acids, xanthones, terpenes, and saponins. The primary goal of this review is to emphasize the importance of extracting bioactive compounds from lasoda and evaluating their antioxidant potential. Furthermore, this review emphasizes the major areas for the application of lasoda and its extract as prospective positive health agents that can be used in the preparation of functional foods. The use of lasoda may also improve the value of bakery products and meat quality and prevent postharvest losses. This review is a pilot article that can aid in the nutritional profiling of Cordia fruits and seeds, and it provides information on the effective and efficient use of this underutilized fruit in the food and nutraceutical industries.


Assuntos
Antioxidantes , Frutas , Compostos Fitoquímicos , Antioxidantes/farmacologia , Frutas/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/química , Alimento Funcional , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Valor Nutritivo , Flavonoides/análise , Flavonoides/farmacologia , Flavonoides/isolamento & purificação
17.
Blood Res ; 59(1): 7, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38485813
18.
Int J Biol Macromol ; 261(Pt 1): 129728, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272423

RESUMO

The intracellular bacteria, Salmonella Typhi adapts to acidic conditions in the host cell by resetting the chromosomal DNA topology majorly controlled by DNA Gyrase, a Type II topoisomerase. DNA Gyrase forms a heterodimer A2B2 complex, which manages the DNA supercoiling and relaxation in the cell. DNA relaxation forms a part of the regulatory mechanism to activate the transcription of genes required to survive under hostile conditions. Acid-induced stress attenuates the supercoiling activity of the DNA Gyrase, resulting in DNA relaxation. Salmonella DNA becomes relaxed as the bacteria adapt to the acidified intracellular environment. Despite comprehensive studies on DNA Gyrase, the mechanism to control supercoiling activity needs to be better understood. A loss in supercoiling activity in E. coli was observed upon deletion of the non-conserved acidic C-tail of Gyrase A subunit. Salmonella Gyrase also contains an acidic tail at the C-terminus of Gyrase A, where its deletion resulted in reduced supercoiling activity compared to wild-type Gyrase. Interestingly, we also found that wild-type Gyrase compromises supercoiling activity at acidic pH 2-3, thereby causing DNA relaxation. The absence of a C-tail displayed DNA supercoiling to some extent between pH 2-9. Hence, the C-tail of Gyrase A might be one of the controlling factors that cause DNA relaxation in Salmonella at acidic pH conditions. We propose that the presence of the C-tail of GyraseA causes acid-mediated inhibition of the negative supercoiling activity of Gyrase, resulting in relaxed DNA that attracts DNA-binding proteins for controlling the transcriptional response.


Assuntos
DNA Girase , Salmonella typhi , DNA Girase/genética , Salmonella typhi/genética , Escherichia coli/genética , DNA , DNA Super-Helicoidal/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo
19.
Org Biomol Chem ; 22(4): 838-849, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38175260

RESUMO

Triphyrin(2.1.1) is a 14π aromatic contracted congener of an 18π aromatic porphyrin(1.1.1.1). An unsymmetrical 2,3,7,8-tetrabromo meso-tetraaryl triphyrin(2.1.1) containing four bromides at the ß-pyrrole carbons of two out of three pyrrole rings of the triphyrin core was synthesized for the first time in 90% yield by treating meso-tetraaryl triphyrin(2.1.1) with five equivalents of N-bromosuccinimide in 1,2-dichloroethane (DCE) under reflux for 8 h. The X-ray structure revealed that the triphyrin(2.1.1) macrocycle was significantly distorted in 2,3,7,8-tetrabromo meso-tetraaryl triphyrin compared to planar meso-tetraaryl triphyrin. A series of novel sterically crowded 2,3,5,7,8,10,11,16-octaaryl triphyrin(2.1.1)s were synthesized by coupling 2,3,7,8-tetrabromo meso-tetraaryl triphyrin with six different aryl boronic acids under Suzuki-Miyaura coupling conditions. NMR, absorption, electrochemical and theoretical studies revealed that the structure and electronic properties were drastically altered in the 2,3,5,7,8,10,11,16-octaaryl triphyrin(2.1.1) series due to the presence of four additional aryl groups at the ß-pyrrole carbons which caused steric crowding at the periphery of the triphyrin core resulting in a decrease in effective π-conjugation in the triphyrin(2.1.1)s.

20.
Infect Disord Drug Targets ; 24(6): e190124225866, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38251692

RESUMO

BACKGROUND: The COVID-19 pandemic caused by SARS-CoV-2 is a respiratory disease which created havoc worldwide, was accompanied by another peculiar, otherwise rare, secondary fungal infection Mucormycosis which was observed at exceptionally high incidence in India during the second wave of COVID-19. The article explores possible links between the two infectious diseases to understand a higher-than-normal occurrence of Mucormycosis in COVID-19 patients. Coronavirus enters the patients through ACE-2 and many other receptors like- NRP-1, TfR, CD-126, and CD-26. Virus bind to cells possessing these receptors and affect their proper functioning, disturbing homeostatic metabolism and resulting in conditions like hyperglycemia, Diabetic Ketoacidosis (DKA), low serum pH, iron overload, anemia, hypoxia, and immunosuppression as explained in the article. All these outcomes provide a very supportive environment for the attack and spread of Mucormycosis fungi. The major receptor for Mucormycosis in humans is the GRP-78. Its expression is upregulated by coronavirus entry and by hyperferritinemia, hyperglycemia, and acidic conditions prevalent in COVID patients, thus providing an easy entry for the fungal species. Upregulation of GRP-78 furthermore damages pancreatic ß-cells and intensifies hyperglycemia, showing quite a synergic relationship. Inordinate rise of Mucormycosis cases in India might be explained by facts like- India possessing a large proportion of diabetic patients, emergence of a very deadly strain of coronavirus- Delta strain, higher doses of steroids and antibodies used to treat patients against this strain, overburdened health care services, sudden much higher need of oxygen supply and use of industrial oxygen could explain the Mucormycosis outbreak observed in India during the second wave of COVID-19. OBJECTIVE: The present review discusses the functional interdependence between COVID-19 and Mucormycosis and summarizes the possible synergic links between COVID and Mucormycosis. CONCLUSION: The receptors and metabolic pathways affected by COVID-19 result in severe physiological conditions- hyperglycemia, DKA, anemia, iron overload, immunosuppression, and hypoxia. All these conditions not only increase the expression of GRP-78, the major receptor for entry of fungi but also play a crucial role in providing quality media for Mucormycosis fungus to establish and grow. Hence explains the fungal epidemic observed in India during the second wave of COVID-19 in India.


Assuntos
COVID-19 , Mucormicose , SARS-CoV-2 , Humanos , COVID-19/complicações , COVID-19/epidemiologia , Chaperona BiP do Retículo Endoplasmático , Hiperglicemia/epidemiologia , Hiperglicemia/etiologia , Índia/epidemiologia , Mucormicose/complicações , Mucormicose/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...