Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 22(5): 189, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34159457

RESUMO

Phospholipid complexation, despite being a successful, versatile, and burgeoning strategy, stickiness of phospholipids leads to suboptimal dissolution rate of drugs. This work was undertaken to fabricate simvastatin-phospholipid complex (SIM-PLC)-loaded matrix dispersion (SIM-PLC-MD) using Soluplus® as carrier material, to augment dispersibility and dissolution of SIM-PLC without altering complexation between simvastatin (SIM) and phospholipid. SIM-PLC and SIM-PLC-MD were prepared using solvent evaporation and discontinuous solvent evaporation techniques, respectively. The successful complexation was substantiated by FTIR method. Besides, PXRD and SEM studies disclosed the absence of crystallinity of SIM in both SIM-PLC and SIM-PLC-MD. The TEM analysis monitored the self-assembly of SIM-PLC and SIM-PLC-MD into colloidal structures, which could be correlated with redispersion in GIT fluids upon oral administration. The considerable increase in hydrophilicity of SIM-PLC-MD and SIM-PLC as evident from partition coefficient experiment can further be correlated with their remarkably improved solubility profiles in the following pattern: SIM-PLC-MD˃SIM-PLC˃SIM. Correspondingly, improved dispersibility of SIM-PLC-MD in comparison to SIM-PLC can be accountable for accelerated dissolution rate by 2.53-fold and 1.5-fold in pH 1.2 and 6.8 conditions, respectively. The oral pharmacokinetic evaluation in Sprague Dawley (SD) rats revealed 3.19-fold enhancement in oral bioavailability of SIM through SIM-PLC-MD when compared with plain SIM, whereas 1.83-fold increment was observed in the case of SIM-PLC. Finally, the efficacy experimentation in SD rats revealed that SIM-PLC-MD significantly reduced triglycerides and cholesterol levels in comparison to SIM and SIM-PLC. These outcomes suggest that a matrix dispersion strategy improves oral bioavailability and hypolipidemic activity of SIM.


Assuntos
Fosfolipídeos/química , Fosfolipídeos/farmacocinética , Sinvastatina/química , Sinvastatina/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Feminino , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polivinil/administração & dosagem , Polivinil/química , Polivinil/farmacocinética , Ratos , Ratos Sprague-Dawley , Sinvastatina/administração & dosagem , Solubilidade , Solventes/administração & dosagem , Solventes/química , Solventes/farmacocinética
2.
Eur J Pharm Sci ; 153: 105466, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673792

RESUMO

Chemical modification of chitosan derivatives with hydrophobic fatty acids to enhance their self-aggregation behavior is well established. Previously our group reported low molecular weight carboxymethyl chitosan (CMCS) which showed enhancement in apparent permeability of hydrophobic drug, tamoxifen. Further extension to this work, herein we synthesize a new polymer of oleic acid grafted low molecular weight carboxymethyl chitosan (OA-CMCS) for maneuvering biopharmaceutical performance of poorly water soluble drugs. This polymer was designed and synthesized via amidation reaction and well characterized by analytical tools like 1H-NMR and FT-IR spectroscopy. OA-CMCS conjugate easily self-organized into micelles like structure in an aqueous medium and showed a low critical micellar concentration of 1 µg/mL. Poorly water-soluble drug, docetaxel (DTX) was used as a model drug in this study. Optimization of variables resulted in the formation of spherical DTX loaded OA-CMCS micelles in the size range of 213.4 ± 9.6 nm with an entrapment efficiency of 57.26 ± 1.25%. DTX loaded OA-CMCS micelles showed slow and sustained DTX release behavior in simulated body fluid during in vitro release study. The permeability of DTX loaded OA-CMCS micelles across the gastrointestinal tract were investigated by in vitro Caco-2 cells model. The apparent permeability of DTX loaded OA-CMCS micelles improved up to 6.57-fold in comparison to free DTX suspension which indicates the increase in paracellular absorption of DTX. Additionally, in vivo pharmacokinetic study demonstrates an increase in Cmax (1.97-fold) and AUC (2.62-fold) for DTX loaded OA-CMCS micelles compared to free DTX suspension. Hence, we propose OA-CMCS as a promising cargo to incorporate drugs for enhancement of biopharmaceutical performance.


Assuntos
Antineoplásicos , Quitosana , Células CACO-2 , Portadores de Fármacos , Humanos , Micelas , Ácido Oleico , Permeabilidade , Polímeros , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Eur J Pharm Sci ; 149: 105338, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32283194

RESUMO

The present work aimed to enhance liposolubility along with intestinal permeability of BCS class III drug fexofenadine (FEX) via phospholipid complexation strategy in order to improve its oral bioavailability. This work demonstrated the minimized P-gp efflux and augmented absorption of FEX when fabricated as phospholipid complex. The fexofenadine-phospholipid complex (FEX-PLC) was prepared using widely used solvent evaporation method. Among three phospholipids, Phospholipon® 90 H was screened out for further studies due to high drug content and physical form. The FTIR spectra demonstrated the disappearance of characteristic peaks of FEX which could be attributed to shielding by phospholipid due to molecular interactions between FEX and phospholipid. The differential scanning calorimetry (DSC) and powder X-ray diffractometry (PXRD) revealed the amorphous state of FEX in the complex. The partition coefficient study indicated the increased in lipophilicity which can further be correlated with 1.85 ± 0.850 fold enhancement in intestinal permeability of FEX-PLC in comparison to FEX in Caco-2 permeability assay. Furthermore, efflux ratio of FEX was decreased significantly from 4.04 (FEX) to 1.34 (FEX-PLC) which indicated inhibition of P-gp efflux of FEX. The in vivo evaluation in Wistar rats presented 3.38 fold increment in oral bioavailability of FEX-PLC as compared to FEX. In summary, the phospholipid complexation demonstrated as a simple and promising approach to tackle oral bioavailability hurdles of BCS class III drugs and convert them to BCS class I drugs.

4.
Colloids Surf B Biointerfaces ; 173: 581-590, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30352379

RESUMO

The concerns impeding the success of chemotherapy in cancer is descending efficacy of drugs due to the development of multiple drug resistance (MDR). The current efforts employed to overcome MDR have failed or are limited to only preliminary in-vitro investigations. Nanotechnology is at the forefront of the drug delivery research, playing pivotal role in chemotherapy and diagnosis, thereby providing innovative approaches for the management of the disease with minimal side effects. Recently, polymeric micelles (PMs) have witnessed significant developments in cancer therapy. PMs are self-assembled colloidal particles, with a hydrophilic head and a long hydrophobic tail, which enhance the solubility, permeability and bioavailability of drugs, due to the unique features of reaching higher concentration in the biological system, above critical micellar concentration. One of the effective approaches to improve the efficacy of chemotherapy and overcome drug resistance would be to employ multifunctional approach (combination of stimuli-responsive, utilization of drug resistance modulators and combination therapy) using PMs as drug delivery systems. Actively targeted, stimuli-sensitive and multifunctional approaches involve using single and/or combination of approaches (pH-responsive, temperature regulated, reduction-sensitive, ultrasound etc.) to combat drug resistant. The review will describe PMs, types of copolymers used in PMs, preparation and characterization of PMs. A comprehensive list of PMs tested in clinical trials is discussed. Lastly, this review covers stimuli-sensitive and multifunctional approaches to overcome MDR in cancer utilizing PMs.


Assuntos
Antineoplásicos/farmacocinética , Terapia Combinada/métodos , Sistemas de Liberação de Medicamentos/métodos , Micelas , Neoplasias/terapia , Polímeros/metabolismo , Antineoplásicos/farmacologia , Coloides , Sistemas de Liberação de Medicamentos/instrumentação , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Neoplasias/patologia , Polímeros/síntese química , Solubilidade
5.
Expert Opin Drug Deliv ; 15(11): 1127-1142, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30324813

RESUMO

INTRODUCTION: A major concern that limits the success of cancer chemotherapy is multidrug resistance (MDR). The drug resistance mechanisms are either host related or tumor related. The host tumor interacting factors also contribute to MDR. Multifunctional polymeric micelles offer several advantages in circumventing MDR due to their design, selectivity, and stability in cancer microenvironment. AREAS COVERED: The review is broadly divided into two parts: the first part covers MDR and its mechanisms; the second part covers multifunctional polymeric micelles in combating MDR through its state-of-the-art design. This part covers various strategies like use of P-gp transporter inhibitors, TPGS, pH & thermo-sensitive, and siRNA for selectivity of PMs against multidrug-resistant tumors. EXPERT OPINION: Numerous approaches have been tested using polymeric micelles to overcome MDR tumors. However, these are either limited to only in-vitro investigations and/or preliminary preclinical models and do not investigate the underlying biological mechanism. Hence, there exists an unmet need to perform fundamental research that focuses on studying the underlying mechanism and preclinical/clinical testing of the micellar formulations.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias/tratamento farmacológico , Polímeros/química , Animais , Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Micelas
6.
Eur J Pharm Sci ; 107: 54-61, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28663037

RESUMO

This study was envisaged to demonstrate the potential of exemestane loaded phospholipid/sodium deoxycholate solid dispersions (EXE-PL/SDC-SDs) on the solubility and oral bioavailability of EXE. Initial studies were performed to screen the best suitable phospholipid among lysophosphatidylcholine, Phospholipon® P80H and Lipoid® E80S for solid dispersion preparation. Further studies were carried out to optimize the molar concentration of phospholipid and sodium deoxycholate (SDC) for EXE-PL/SDC-SDs preparation. Optimized EXE-PL/SDC-SDs was prepared using Lipoid® E80S and SDC in 1:4M concentration, respectively and lyophilized using 10% w/w 2-hydroxypropyl-ß-cyclodextrin (2-HPCD). The physical state of EXE in lyophilized formulation was confirmed by DSC and PXRD. Lyophilized formulation exhibits a significant increase in solubility and dissolution rate as compared to free drug EXE. Apparent permeability study was performed on Caco-2 cell line for 2h. The lyophilized EXE-PL/SDC-SDs exhibits 4.6-fold increase in absorptive transport as compared to EXE. Pharmacokinetic study in fasted female Sprague-Dawley rats revealed a 2.3-fold increase in AUC0-72h. Thus, the results suggest that PL/SDC-SDs is a promising carrier for EXE delivery.


Assuntos
Androstadienos/administração & dosagem , Antineoplásicos/administração & dosagem , Fosfolipídeos/administração & dosagem , Androstadienos/sangue , Androstadienos/química , Androstadienos/farmacocinética , Animais , Antineoplásicos/sangue , Antineoplásicos/química , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Células CACO-2 , Formas de Dosagem , Liberação Controlada de Fármacos , Feminino , Liofilização , Humanos , Permeabilidade , Fosfolipídeos/química , Fosfolipídeos/farmacocinética , Ratos Sprague-Dawley , Solubilidade
7.
Eur J Pharm Sci ; 101: 149-159, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28214545

RESUMO

Recent studies showed an enhanced oral bioavailability of tamoxifen (TMX) by hydrophobically modified α-tocopherol succinate-g-carboxymethyl chitosan (Cmc-TS) micelles. As a continued effort, here we evaluated TMX-loaded polymeric micelles (TMX-PMs) for its enhanced permeability with increased anticancer efficacy and decreased hepatotoxicity. We employed co-solvent evaporation technique to encapsulate TMX into Cmc-TS. Apparent permeability assay of TMX-PMs was performed on Caco-2 cell line. The absorptive transport of TMX increased significantly about 3.8-fold when incorporated into Cmc-TS PMs. Cytotoxicity of Cmc-TS PMs was studied on MCF-7 cell line by MTT and; confocal microscopy was used for cellular uptake. Confocal microscopy revealed that Cmc-TS PMs could effectively accumulate in the cytosol of MCF-7 cell lines. In vitro data was further validated using N-methyl-N-nitrosourea (MNU)-induced mammary carcinogenesis model in Sprague-Dawley rats. Hepatotoxicity profiles of TMX-PMs at three different doses were also evaluated against the free drug TMX. TMX-PMs were more effective in suppressing breast tumor in MNU-induced mammary carcinoma model than free TMX with better safety profile. In addition, histological data shows that tumors are "benign" in TMX-PMs treated group compared with "malignant" tumors in free TMX treated and control groups. Overall, the results implicate that our Cmc-TS PMs may serve as a promising carrier for the intracellular delivery of anticancer drug molecules via oral route.


Assuntos
Quitosana/análogos & derivados , Permeabilidade/efeitos dos fármacos , Polímeros/química , Tamoxifeno/química , Tamoxifeno/metabolismo , alfa-Tocoferol/química , Animais , Antineoplásicos , Disponibilidade Biológica , Neoplasias da Mama/tratamento farmacológico , Células CACO-2 , Linhagem Celular Tumoral , Quitosana/química , Portadores de Fármacos/química , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Micelas , Ratos , Ratos Sprague-Dawley , Tamoxifeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...